Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao American Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal of Medical Genetics
Article . 2002 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Alcohol and genetics: New models

Authors: John C, Crabbe;

Alcohol and genetics: New models

Abstract

AbstractAlcoholism is a complex genetic trait; susceptibility is influenced by multiple genes of small effect. To pursue mechanistic studies, genetic animal models have been used. These models are partial, each addressing one or more of the contributing traits rather than the disease as a whole. Animal studies have modeled alcohol's rewarding effects, the development of tolerance, the pathological consequences to brain systems, and the dependence on alcohol inferred from the presence of withdrawal symptoms when the drug is removed. The classical genetic methods of inbred strain analysis and development and studies of selectively bred lines have been employed for more than 40 years. Recently, such studies have shown that a genetic tendency to experience severe withdrawal is associated with a tendency to avoid self‐administration of alcohol. Also recently, attempts to identify the specific genes conferring risk or protection from alcohol's effects have been undertaken. These studies have used mapping techniques based on gene sequence polymorphisms, studies of gene expression differences, and the use of candidate gene targeting such as creation of null mutants. Studies reviewed here have mapped quantitative trait loci (QTL) for many genes affecting alcohol sensitivity, tolerance, reward, and withdrawal severity. The furthest progress in gene mapping has been made toward one withdrawal QTL on mouse chromosome 4. Using multiple congenic strains, the gene conferring increased withdrawal severity has been isolated to a region of less than 1 centiMorgan, containing fewer than 20 genes. A strong candidate gene, coding for a multiple PS095/DLG/Z0‐1 (PDZ) binding domain zinc finger protein, cannot be excluded. Although many more such genes will be identified in the near future, their contribution to the mapped phenotype will be shown to be dependent on epistatic interactions with other risk genes, as well as genes in the animal's background. Progress in gene identification will also depend crucially on the precise description of the phenotypes being mapped so that their pleiotropic range of influence on the multi‐behavioral phenotypic syndrome can be determined. © 2002 Wiley‐Liss, Inc.

Related Organizations
Keywords

Alcoholism, Disease Models, Animal, Multifactorial Inheritance, Ethanol, Models, Genetic, Risk Factors, Quantitative Trait Loci, Animals, Humans, Substance Withdrawal Syndrome

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!