Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advanced Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Science
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Science
Article . 2025
Data sources: DOAJ
versions View all 4 versions
addClaim

EccDNA‐Driven VPS41 Amplification Alleviates Genotoxic Stress via Lysosomal KAI1 Degradation

Authors: Bin Shi; Ping Yang; Huaijin Qiao; Jinchen He; Bin Song; Hao Bai; Fengdi Jiang; +6 Authors

EccDNA‐Driven VPS41 Amplification Alleviates Genotoxic Stress via Lysosomal KAI1 Degradation

Abstract

Abstract Genotoxic therapies such as ionizing radiation eliminate cancer cells by inducing extensive DNA damage but often cause normal tissue toxicity, including cutaneous injury. Extrachromosomal circular DNA (eccDNA) refers to circular DNA fragments outside the chromosomal context, with their formation and persistence linked to DNA damage repair and genomic instability. Despite growing recognition of eccDNA in oncogenesis, its role under genotoxic stress in normal tissues remains poorly understood. Here, eccDNA is profiled in irradiated rat skin using Circle‐seq, identifying alterations in eccDNA number and composition. Specifically, radiation induced circle 17:44148731‐48208624 , in which vacuolar protein sorting 41 homolog (VPS41) is the sole radiation‐induced amplification gene by semiquantitative PCR and gel electrophoresis. The findings show that eccDNA or VPS41 overexpression reduces radiation‐induced skin injury (RISI) in vitro and in vivo. Proteomic and interaction analyses identified metastasis suppressor kangai‐1 (KAI1) as a VPS41‐interacting partner. Notably, VPS41 overexpression promotes KAI1 lysosomal degradation, protecting against radiation‐induced apoptotic cell death. Peptide array analysis pinpoints the VPS41‐KAI1 interaction through the K263 residue, consistent with AlphaFold prediction. The findings uncover a novel mechanism in which radiation‐induced eccDNA, specifically VPS41, mitigates skin injury by modulating KAI1 degradation. This study highlights the role of eccDNA in cellular defense, providing strategies to enhance tissue resilience to genotoxic stress.

Related Organizations
Keywords

vacuolar protein sorting 41 homolog (VPS41), radiation‐induced skin injury, Science, Q, circle‐Seq, extrachromosomal circular DNA, genotoxic stress, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold
Related to Research communities
Cancer Research