Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advanced Optical Mat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Optical Materials
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Optical Materials
Article . 2023
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Luminescence Temperature Quenching in Mn2+ Phosphors

Authors: Arnoldus J. van Bunningen; Atul D. Sontakke; Ruben van der Vliet; Vincent G. Spit; Andries Meijerink;

Luminescence Temperature Quenching in Mn2+ Phosphors

Abstract

AbstractNarrower band red and green emission in phosphor‐converted white light‐emitting diodes (wLEDs) can improve the efficacy and color gamut in lighting and display applications. A promising luminescent ion is Mn2+ that can have both narrowband green (tetrahedral coordination) and red (octahedral coordination) emission. Unlike in earlier lighting applications of Mn2+ phosphors, temperature quenching is important in wLEDs. Insight into the thermal quenching behavior of Mn2+ luminescence is lacking. Here systematic research is reported for a variety of Mn2+‐doped phosphors; a huge variation in the luminescence quenching temperature T50, ranging from 50 K for Mn2+ in ZnTe to 1200 K in MgAl2O4, is revealed. The value T50 shows a positive correlation with the bandgap of the host, but no correlation with the full width half maximum (FWHM) of the emission band, indicating that thermally activated photoionization, not thermal crossover, is the operative quenching mechanism. This is confirmed by thermally stimulated luminescence (TSL) measurements that show a rise in TSL signal following photoexcitation at temperatures around T50 providing evidence that quenching is correlated with generation of free charge carriers. Based on these findings, as a design rule is obtained that for temperature‐stable Mn2+ luminescence in (high power) LEDs a wide‐bandgap host material is required.

Country
Netherlands
Related Organizations
Keywords

Mn 2+, luminescence, temperature dependence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 1%
Green
hybrid