Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advanced Materialsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advanced Materials
Article . 2025 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
addClaim

Vitrimer Nanocomposites from Polymerization‐Induced Self‐Assembly

Authors: Thi H. Le; Kevin A. Stewart; Cabell B. Eades; Jared I. Bowman; Nathan B. Wei; Brent S. Sumerlin;

Vitrimer Nanocomposites from Polymerization‐Induced Self‐Assembly

Abstract

AbstractVitrimers, a class of covalent adaptable networks (CANs), promise sustainability through recyclability and reprocessability, yet suffer from creep under prolonged stress due to dynamic bond exchange. Here, a materials design strategy is reported that integrates polymerization‐induced self‐assembly (PISA) to embed core‐crosslinked nanoparticles within vitrimer networks, yielding hierarchical dual‐crosslinked systems with a reduction of creep susceptibility by up to 90% at 150 °C yet good reprocessability at elevated temperatures (Ea = 246 kJ mol−1). These spherical nanostructures restrict chain mobility and act as rheological modifiers that can be synthetically tuned through core block length. This approach offers precise architectural control, leveraging nanoparticle phase morphology to direct bulk vitrimer properties. This study establishes a new paradigm for creep‐resistant CANs and showcases how PISA can advance vitrimer performance by structurally encoding mechanical robustness and reprocessability.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!