<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 33998066
AbstractSuperconducting quantum metamaterials are expected to exhibit a variety of novel properties, but have been a major challenge to prepare as a result of the lack of appropriate synthetic routes to high‐quality materials. Here, the discovery of synthesis routes to block copolymer (BCP) self‐assembly‐directed niobium nitrides and carbonitrides is described. The resulting materials exhibit unusual structure retention even at temperatures as high as 1000 °C and resulting critical temperature, Tc, values comparable to their bulk analogues. Applying the concepts of soft matter self‐assembly, it is demonstrated that a series of four different BCP‐directed mesostructured superconductors are accessible from a single triblock terpolymer. Resulting materials display a mesostructure‐dependent Tc without substantial variation of the XRD‐measured lattice parameters. Finally, field‐dependent magnetization measurements of a sample with double‐gyroid morphology show abrupt jumps comparable in overall behavior to flux avalanches. Results suggest a fruitful convergence of soft and hard condensed matter science.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |