Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advanced Materialsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advanced Materials
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Superconducting Quantum Metamaterials from Convergence of Soft and Hard Condensed Matter Science

Authors: R. Bruce van Dover; Francis J. DiSalvo; Ulrich Wiesner; Sol M. Gruner; Peter A. Beaucage; Peter A. Beaucage;

Superconducting Quantum Metamaterials from Convergence of Soft and Hard Condensed Matter Science

Abstract

AbstractSuperconducting quantum metamaterials are expected to exhibit a variety of novel properties, but have been a major challenge to prepare as a result of the lack of appropriate synthetic routes to high‐quality materials. Here, the discovery of synthesis routes to block copolymer (BCP) self‐assembly‐directed niobium nitrides and carbonitrides is described. The resulting materials exhibit unusual structure retention even at temperatures as high as 1000 °C and resulting critical temperature, Tc, values comparable to their bulk analogues. Applying the concepts of soft matter self‐assembly, it is demonstrated that a series of four different BCP‐directed mesostructured superconductors are accessible from a single triblock terpolymer. Resulting materials display a mesostructure‐dependent Tc without substantial variation of the XRD‐measured lattice parameters. Finally, field‐dependent magnetization measurements of a sample with double‐gyroid morphology show abrupt jumps comparable in overall behavior to flux avalanches. Results suggest a fruitful convergence of soft and hard condensed matter science.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?