Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advanced Materialsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Materials
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advanced Materials
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

Bioinspired Materials with Self‐Adaptable Mechanical Properties

Authors: Santiago Orrego; Zhezhi Chen; Urszula Krekora; Decheng Hou; Seung‐Yeol Jeon; Matthew Pittman; Carolina Montoya; +2 Authors

Bioinspired Materials with Self‐Adaptable Mechanical Properties

Abstract

AbstractNatural structural materials, such as bone, can autonomously modulate their mechanical properties in response to external loading to prevent failure. These material systems smartly control the addition/removal of material in locations of high/low mechanical stress by utilizing local resources guided by biological signals. On the contrary, synthetic structural materials have unchanging mechanical properties limiting their mechanical performance and service life. Inspired by the mineralization process of bone, a material system that adapts its mechanical properties in response to external mechanical loading is reported. It is found that charges from piezoelectric scaffolds can induce mineralization from surrounding media. It is shown that the material system can adapt to external mechanical loading by inducing mineral deposition in proportion to the magnitude of the stress and the resulting piezoelectric charges. Moreover, the mineralization mechanism allows a simple one‐step route for fabricating functionally graded materials by controlling the stress distribution along the scaffold. The findings can pave the way for a new class of self‐regenerating materials that reinforce regions of high stress or induce deposition of minerals on the damaged areas from the increase in mechanical stress to prevent/mitigate failure. It is envisioned that the findings can contribute to addressing the current challenges of synthetic materials for load‐bearing applications from self‐adaptive capabilities.

Keywords

Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), Soft Condensed Matter (cond-mat.soft), FOS: Physical sciences, Physics - Applied Physics, Applied Physics (physics.app-ph), Condensed Matter - Soft Condensed Matter, Adaptation and Self-Organizing Systems (nlin.AO), Nonlinear Sciences - Adaptation and Self-Organizing Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 1%
Top 10%
Top 1%
Green
hybrid