
pmid: 27061799
Dynamic crosslinking of extremely stretchable hydrogels with rapid self-healing ability is described. Using this new strategy, the obtained hydrogels are able to elongate 100 times compared to their initial length and to completely self-heal within 30 s without external energy input.
Mechanics of Materials, Mechanical Engineering, General Materials Science, 540
Mechanics of Materials, Mechanical Engineering, General Materials Science, 540
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 450 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
