
The magnetoelectric coupling effect with profound physics and enormous potential applications has provoked a great number of research activities in materials science. Here, we report that the reversible orbital reconstruction driven by ferroelectric polarization modulates the magnetic performance of ferroelectric ferromagnetic heterostructure. Mn in plane orbital occupancy and related interfacial exotic magnetic state are enhanced and weakened by the negative and positive electric field, respectively. Our findings thus not only present a broad opportunity to fill the missing member, orbital in the mechanism of magnetoelectric coupling, but also make the orbital degree of freedom straight forward to the application in microelectronic device.
26 pages, 5 figures, Accepted by Advanced Materials
Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences
Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 83 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
