
Material issues pose a significant challenge for the design of future fusion reactors. These issues require new advanced materials to be developed. W‐fiber‐reinforced W‐composite material (W f/W) incorporates extrinsic toughening mechanisms increasing the resistance against failure and thus granting steps toward application in a future fusion reactor. W f/W can be produced based on chemical vapor deposition or powder metallurgical routes. In this contribution, the efforts of upscaling the production of W f/W will be reviewed based on recent results. In addition, the activities related to enabling large‐scale production for new fusion applications are being studied. Herein, two main achievements are to be highlighted. First, an upscaled production is established to produce flat tile samples for joining tests on copper and steel, and second, a new method of joining W f/W on copper is established and tested under high heat‐flux conditions.
info:eu-repo/classification/ddc/660, 660
info:eu-repo/classification/ddc/660, 660
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
