<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
This article describes the fundamental phenomena of cavitation. The distinctive characteristics of cavitation in the marine applications, especially in the propellers, are introduced. This article explains first the quasi-steady processes in phase transitions of pure substances. Next, the bubble dynamics are explained as well as the Rayleigh-Plesset equation that is used to describe the single bubble dynamics in a liquid medium. The bubble stability and its effect on cavitation inception are also discussed. The noise and erosion that may be induced by cavitation bubble or cavitating cloud collapse are shortly introduced. The common cavitation types on marine propellers and the conditions in which they occur are described. The cavitation types are demonstrated by photographs of cavitating model propellers. Finally, the dynamics of sheet and tip vortex cavitation are explained in more detail. The inception conditions and the shedding mechanisms of sheet cavitation are explained. The potential flow vortex model is introduced as well as the viscous effects in the vortex core. The disturbances in the vaporous vortex core are discussed shortly.
tip vortex cavitation, noise, ta214, cavitation, phase change, sheet cavitation, SDG 14 - Life Below Water, cavitation inception, cavitation bubble, erosion
tip vortex cavitation, noise, ta214, cavitation, phase change, sheet cavitation, SDG 14 - Life Below Water, cavitation inception, cavitation bubble, erosion
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |