Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao HAL-Insermarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-Inserm
Article . 2015
Data sources: HAL-Inserm
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-CEA
Article . 2015
Data sources: HAL-CEA
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

complement classical and lectin pathways

Authors: Thielens, Nicole; Gaboriaud, Christine; Thiel, Steffen;

complement classical and lectin pathways

Abstract

The classical and lectin pathways of complement are major recognition systems of innate immunity that are found in mammals and other animal species. By means of several multimolecular proteases – C1, the mannan-binding lectin (MBL)–MBL-associated serine protease 2 (MBL–MASP-2) and the ficolin–MASP-2 complexes – each comprising a recognition protein and a protease component, they detect pathogens and other targets and thereby trigger proteolytic reactions. Both pathways converge to the formation of C3 convertase, a complex protease that cleaves C3, the central component of the complement system. Proteolytic cleavage of C3 generates a series of fragments and elicits various effector mechanisms, including inflammation and phagocytosis. These mechanisms contribute to the elimination of pathogenic microorganisms and altered host cells from blood and tissues and modulate the adaptive immune response. Key Concepts: C1q, MBL and ficolins are pattern-recognition molecules able to sense conserved motifs on pathogens and altered self-cells. C1q is a major sensor of apoptotic cells and regulator of immune tolerance. Proteolytic cleavage of C3 is pivotal for amplification of the complement response and labelling of the target particles. Target recognition, proteolysis and complex formation generate conformational changes that underlie complement functioning. Complement activation and activity are tightly regulated to avoid noxious side effects on normal host cells and tissues. Keywords: altered self-cells clearance; innate immunity; inflammation; pathogens; pattern recognition; phagocytosis; proteolysis

Keywords

[SDV] Life Sciences [q-bio]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!