Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Planets
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Colors of Jupiter's large anticyclones and the interaction of a Tropical Red Oval with the Great Red Spot in 2008

Authors: Sanchez-Lavega, A; Legarreta, J; Garcia-Melendo, E; Hueso, R; Perez-Hoyos, S; Gomez-Forrellad, J; Fletcher, L; +6 Authors

Colors of Jupiter's large anticyclones and the interaction of a Tropical Red Oval with the Great Red Spot in 2008

Abstract

AbstractThe nature and mechanisms producing the chromophore agents that provide color to the upper clouds and hazes of the atmospheres of the giant planets are largely unknown. In recent times, the changes in red coloration that have occurred in large‐ and medium‐scale Jovian anticyclones have been particularly interesting. In late June and early July 2008, a particularly color intense tropical red oval interacted with the Great Red Spot (GRS) leading to the destruction of the tropical red oval and cloud dispersion. We present a detailed study of the tropical vortices, usually white but sometimes red, and a characterization of their color spectral signatures and dynamics. From the spectral reflectivity in methane bands we study their vertical cloud structure compared to that of the GRS and BA. Using two spectral indices we found a near correlation between anticyclones cloud top altitudes and red color. We present detailed observations of the interaction of the red oval with the GRS and model simulations of the phenomena that allow us to constrain the relative vertical extent of the vortices. We conclude that the vertical cloud structure, vertical extent, and dynamics of Jovian anticyclones are not the causes of their coloration. We propose that the red chromophore forms when background material (a compound or particles) is entrained by the vortex, transforming into red once inside the vortex due to internal conditions, exposure to ultraviolet radiation, or to the mixing of two chemical compounds that react inside the vortex, confined by a potential vorticity ring barrier.

Country
United Kingdom
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Average
Green
bronze