Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://unisa.alma.e...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://unisa.alma.exlibrisgro...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://unisa.alma.exlibrisgro...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Clinical Otolaryngology
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
https://doi.org/10.1002/146518...
Part of book or chapter of book . 2007 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1002/146518...
Part of book or chapter of book . 2011 . Peer-reviewed
Data sources: Crossref
Cochrane Database of Systematic Reviews
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 14 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vestibular rehabilitation for unilateral peripheral vestibular dysfunction

Authors: Susan Hillier; Michelle N. McDonnell;

Vestibular rehabilitation for unilateral peripheral vestibular dysfunction

Abstract

This is an update of a Cochrane review first published in The Cochrane Library in Issue 4, 2007 and previously updated in 2011.Unilateral peripheral vestibular dysfunction (UPVD) can occur as a result of disease, trauma or postoperatively. The dysfunction is characterised by complaints of dizziness, visual or gaze disturbances and balance impairment. Current management includes medication, physical manoeuvres and exercise regimes, the latter known collectively as vestibular rehabilitation.To assess the effectiveness of vestibular rehabilitation in the adult, community-dwelling population of people with symptomatic unilateral peripheral vestibular dysfunction.We searched the Cochrane Ear, Nose and Throat Disorders Group Trials Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; CINAHL; Web of Science; BIOSIS Previews; Cambridge Scientific Abstracts; ISRCTN and additional sources for published and unpublished trials. The most recent search was 18 January 2014.Randomised controlled trials of adults living in the community, diagnosed with symptomatic unilateral peripheral vestibular dysfunction. We sought comparisons of vestibular rehabilitation versus control (e.g. placebo), other treatment (non-vestibular rehabilitation, e.g. pharmacological) or another form of vestibular rehabilitation. Our primary outcome measure was change in the specified symptomatology (for example, proportion with dizziness resolved, frequency or severity of dizziness). Secondary outcomes were measures of function, quality of life and/or measure(s) of physiological status, where reproducibility has been confirmed and shown to be relevant or related to health status (for example, posturography), and adverse effectsWe used the standard methodological procedures expected by The Cochrane Collaboration.We included 39 studies involving 2441 participants with unilateral peripheral vestibular disorders in the review. Trials addressed the effectiveness of vestibular rehabilitation against control/sham interventions, medical interventions or other forms of vestibular rehabilitation. Non-blinding of outcome assessors and selective reporting were threats that may have biased the results in 25% of studies, but otherwise there was a low risk of selection or attrition bias.Individual and pooled analyses of the primary outcome, frequency of dizziness, showed a statistically significant effect in favour of vestibular rehabilitation over control or no intervention (odds ratio (OR) 2.67, 95% confidence interval (CI) 1.85 to 3.86; four studies, 565 participants). Secondary outcomes measures related to levels of activity or participation measured, for example, with the Dizziness Handicap Inventory, which also showed a strong trend towards significant differences between the groups (standardised mean difference (SMD) -0.83, 95% CI -1.02 to -0.64). The exception to this was when movement-based vestibular rehabilitation was compared to physical manoeuvres for benign paroxysmal positional vertigo (BPPV), where the latter was shown to be superior in cure rate in the short term (OR 0.19, 95% CI 0.07 to 0.49). There were no reported adverse effects.There is moderate to strong evidence that vestibular rehabilitation is a safe, effective management for unilateral peripheral vestibular dysfunction, based on a number of high-quality randomised controlled trials. There is moderate evidence that vestibular rehabilitation resolves symptoms and improves functioning in the medium term. However, there is evidence that for the specific diagnostic group of BPPV, physical (repositioning) manoeuvres are more effective in the short term than exercise-based vestibular rehabilitation; although a combination of the two is effective for longer-term functional recovery. There is insufficient evidence to discriminate between differing forms of vestibular rehabilitation.

Related Organizations
Keywords

Adult, Neurology and Neuromuscular Diseases, Clinical Sciences, UPVD, Vestibular Function Tests, Dizziness, repositioning manoeuvres, Sensory Systems, mobility, destibulopathy, systematic review, Vestibular Diseases, vestibular rehab, vestibular rehabilitation, Sensation Disorders, Vertigo, Exercise Movement Techniques, Humans, Vestibule, Labyrinth, Postural Balance, dizziness, Randomized Controlled Trials as Topic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    544
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
544
Top 1%
Top 1%
Top 1%
bronze