Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Microscopy Research ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Microscopy Research and Technique
Article . 2000 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Laminins of the neuromuscular system

Authors: Bruce L. Patton;

Laminins of the neuromuscular system

Abstract

The mammalian neuromuscular system expresses seven laminin genes (alpha 1, alpha 2, alpha 4, alpha 5, beta 1, beta 2, and gamma 1), produces seven isoforms of the laminin trimer (laminins 1, 2, 4, 8, 9, 10, and 11), and distributes these trimers to at least seven distinct basal laminae (perineurial, endoneurial, terminal Schwann cell, myotendinous junction, synaptic cleft, synaptic fold, and extrajunctional muscle). The patterns of expression, assembly, and distribution are regulated during development, and primary and secondary changes in laminin expression occur in several neuromuscular genetic disorders. Functional studies using knockout and transgenic mice, and purified laminins and cell types, demonstrate that laminins are required components of basal laminae in the neuromuscular system. Collectively, laminins have both structural and signaling functions; individually, laminin isoforms have unique roles in regulating the behavior of nerve, muscle, and Schwann cell. Among them, laminin-2 (alpha 2 beta 1 gamma 1) plays an important structural role in supporting the muscle plasma membrane, laminin-4 regulates adhesion and differentiation of the myotendinous junction, and laminin-11 regulates nerve terminal differentiation and Schwann cell motility. Together, these observations reveal remarkable diversity in the formation and function of laminins and basal laminae, and suggest avenues for addressing some neuromuscular diseases.

Related Organizations
Keywords

Muscles, Cell Membrane, Neuromuscular Junction, Nerve Tissue Proteins, Basement Membrane, Muscular Dystrophies, Synapses, Animals, Humans, Protein Isoforms, Laminin, Schwann Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!