
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 21234876
AbstractThe identification of genomic loci linked to or associated with human disease has been greatly facilitated by the evolution of genotyping strategies and techniques. The success of these strategies continues to be based upon clear clinical assessment, accurate sample handling, and careful data management, but also increasingly upon experimental design. Technological advances in the field of genotyping have permitted increasingly complex and large population studies to be performed. An understanding of publicly available genetic variation databases, including an awareness of the limitations of these data, and an appreciation of the strategic approaches that should be used to exploit this information will provide tremendous insight for researchers are aiming to utilize this accessible technology. As genome‐wide association studies (GWAS) and Next Generation (NextGen) sequencing become the mainstays of genetic analyses, it is important that their technical strengths and limitations, as well as their impact on study design, be understood before use in a linkage or genetic association study. Curr. Protoc. Hum. Genet. 68:1.3.1‐1.3.22 © 2011 by John Wiley & Sons, Inc.
Genetic Techniques, Genotype, Genome, Human, Research Design, Genetic Variation, Humans, Sequence Analysis, Genetic Association Studies
Genetic Techniques, Genotype, Genome, Human, Research Design, Genetic Variation, Humans, Sequence Analysis, Genetic Association Studies
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
