Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neurobiol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neurobiology
Article . 1996 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regional differences in gene expression for calcium activated neutral proteases (calpains) and their endogenous inhibitor calpastatin in mouse brain and spinal cord

Authors: Frida Grynspan; Jinhe Li; Ralph A. Nixon; Sherry Bursztajn; S. A. Berman;

Regional differences in gene expression for calcium activated neutral proteases (calpains) and their endogenous inhibitor calpastatin in mouse brain and spinal cord

Abstract

The family of calpains (CANP or calcium activated neutral proteases) and their endogenous inhibitor calpastatin have been implicated in many neural functions; however, functional distinctions between the major calpain isoforms, calpain I and II, have not been clearly established. In the present study we analyzed the gene expression patterns for calpain I and II and calpastatin in mouse brain and spinal cord by measuring both their mRNA and protein levels. Our results show that the overall mRNA level measured by competitive reverse transcription polymerase chain reaction for calpain II is 15-fold higher and for calpastatin is three-fold higher than that for calpain I. Overall, both mRNA and protein expression levels for the calpains and calpastatin showed no significant difference between the spinal cord and the brain. The cellular distributions of mRNA for calpain I or calpastatin, measured by in situ hybridization, are relatively uniform throughout the brain. In contrast, calpain II gene expression is selectively higher in certain neuron populations including pyramidal neurons of the hippocampus and the deep neocortical layers, Purkinje cells of cerebellum, and motor neurons of the spinal cord. The motor neurons were the most enriched in calpain message. Motor neurons possessed 10-fold more calpain II mRNA than any other spinal cord cell type. The differential distribution of the two proteases in the brain and the spinal cord at the mRNA level indicates that the two calpain genes are differentially regulated, suggesting that they play different physiological roles in neuronal activities and that they may participate in the pathogenesis of certain regional neurological degenerative diseases.

Related Organizations
Keywords

Male, Base Sequence, Transcription, Genetic, Calpain, Blotting, Western, Calcium-Binding Proteins, Molecular Sequence Data, Brain, Cysteine Proteinase Inhibitors, Polymerase Chain Reaction, Gene Expression Regulation, Enzymologic, Mice, Inbred C57BL, Mice, Spinal Cord, Animals, Female, RNA, Messenger, In Situ Hybridization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Average
Top 10%
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!