<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractThe possibility to engineer (GeTe)m(Sb2Te3)n phase‐change materials to co‐host ferroelectricity is extremely attractive. The combination of these functionalities holds great technological impact, potentially enabling the design of novel multifunctional devices. Here an experimental and theoretical study of epitaxial (GeTe)m(Sb2Te3)n with GeTe‐rich composition is presented. These layered films feature a tunable distribution of (GeTe)m(Sb2Te3)1 blocks of different sizes. Breakthrough evidence of ferroelectric displacement in thick (GeTe)m(Sb2Te3)1 lamellae is provided. The density functional theory calculations suggest the formation of a tilted (GeTe)m slab sandwiched in GeTe‐rich blocks. That is, the net ferroelectric polarization is confined almost in‐plane, representing an unprecedented case between 2D and bulk ferroelectric materials. The ferroelectric behavior is confirmed by piezoresponse force microscopy and electroresistive measurements. The resilience of the quasi van der Waals character of the films, regardless of their composition, is also demonstrated. Hence, the material developed hereby gathers in a unique 2D platform the phase‐change and ferroelectric switching properties, paving the way for the conception of innovative device architectures.
Settore FIS/03, 670, molecular beam epitaxy, Science, 2D ferroelectrics; density functional theory calculations; molecular beam epitaxy; phase-change materials; van der Waals;, Q, phase-change materials, van der Waals, density functional theory calculations, 2D ferroelectrics, phase‐change materials, Research Articles
Settore FIS/03, 670, molecular beam epitaxy, Science, 2D ferroelectrics; density functional theory calculations; molecular beam epitaxy; phase-change materials; van der Waals;, Q, phase-change materials, van der Waals, density functional theory calculations, 2D ferroelectrics, phase‐change materials, Research Articles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |