Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jurnal Teknik Indust...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Jurnal Teknik Industri Terintegrasi (JUTIN)
Article . 2025 . Peer-reviewed
License: CC BY SA
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Penerapan Algoritma K-Means untuk Pengelompokan Data Mahasiswa Baru Program Studi Teknik Informatika di Universitas Pahlawan Tuanku Tambusai

Authors: Kasini, Kasini; Rusnedy, Hidayati; Tanjung, Lailatul Syifa; Munti, Novi Yona Sidratul;

Penerapan Algoritma K-Means untuk Pengelompokan Data Mahasiswa Baru Program Studi Teknik Informatika di Universitas Pahlawan Tuanku Tambusai

Abstract

Pahlawan Tuanku Tambusai University (UP) in Riau Province has an Informatics Engineering Study Program that accepts new students every year from various regions around Bangkinang. Incoming student data is processed to assist decision making, especially in the field of promotion. This study aims to apply the K-Means algorithm to Informatics Engineering Study Program student data, with attributes of student name and district of origin, to group regions based on promotion potential. The K-Means method is used to group data into three clusters: High Priority, Medium Priority, and Low Priority. The results of the analysis show that there are 22 regions included in the High Priority Cluster, 23 regions in the Medium Priority Cluster, and 43 regions in the Low Priority Cluster. Regions in the High Priority Cluster are the main priority for promotion strategies, while regions in the Medium Priority and Low Priority Clusters require a more focused promotion approach. This study provides an important contribution to the promotion strategy of the Informatics Engineering Study Program at UP by using a data mining approach to increase the visibility of the study program in the community

Keywords

Informatics Engineering, Universitas Pahlawan Tuanku Tambusai, Data Mining, K-Means, Clustering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid