
Стаття присвячена вдосконаленню безконтактних прямих приводів машин різного призначення створенням регульованих конічних аеростатичних опор. Їх застосування дозволяє зменшити вагу, габарити та витрати повітря, а також завдяки регулюванню характеристик опорних систем забезпечити стійкість обертання роторів у широкому діапазоні швидкостей та навантажень. Для дослідження властивостей приводів та ефективності запропонованих шляхів технічного вдосконалення розроблені математичні моделі одно- та багатоопорних систем приводів. Теоретично визначені функціональні зв’язки між конструктивними, силовими, геометричними параметрами конічних аеростатичних опорних систем при регулюванні зазору зі змащенням, що дозволяє змінювати несучу здатність та динамічні властивості безконтактних приводів. Для аналітичного визначення статичних характеристик приводів запропоновано параметричне приведення їх конічних опор до еквівалентних за жорсткістю і несучою здатністю радіальних опор та упорних підп'ятників. Визначено аналітичний критерій стійкості руху ротора одноопорного привода при виникненні коливань та умови роботоздатності регульованих конічних опорних систем, за яких забезпечується статична стійкість приводів при робочих навантаженнях. Створено пневмошпиндель на регульованих конічних аеростатичних опорах різної геометрії. Розроблені експериментальна установка та методика натурних випробувань пневмошпинделя, які підтвердили адекватність теоретичних досліджень. Запропонована методика проєктування безконтактних приводів, а для перевірки проєктних рішень розроблено алгоритм комп'ютерного дослідження статичних характеристик і динамічних властивостей опор та всього привода.
The article is devoted to making adjustable conical air bearings. Its application in different machines allows increase load capacity and reliability, speed extension, reduce mass, overall dimensions and air consumption, secure stable rotary motion in speed wide range due to adjustment of static and dynamic characteristics of direct drives. Mathematical models of single-support and multi-support systems have been designed for study of its characteristics and efficiency of suggested improvements. Function relations between structural, functional, geometric parameters of conical aerostatic systems have been theoretically determined for adjustable air gap that allows change load capacity and dynamic characteristics of non-contact direct drives. Method of parametric conversion of conical bearings to radial and thrust bearings has been suggested. It gives analytical solution of non-contact drive static characteristics. Analytical stability criterion of rotor of single-support system has been determined. Working capacity conditions have been analytically obtained from mass and inertial properties, parameters and characteristics of air-bearing direct drive. Adjustable conical air-bearing pneumatic spindle has been manufactured. Experimental set-up and experimental technique have been designed for validation theoretical results. Design procedure of air-bearing non-contact drives has been engineered. Algorithm of numerical experiment of static characteristics and dynamic properties has been engineered for design decision verification.
критерій стійкості, конічна аеростатична опора, single-support and multi-support systems, conical aerostatic bearing, безконтактний прямий привод, static and dynamic behaviors, numerical experiment, non-contact direct drive, статико-динамічні характеристики, одно- та багатоопорні системи, stability criterion, обчислювальний експеримент
критерій стійкості, конічна аеростатична опора, single-support and multi-support systems, conical aerostatic bearing, безконтактний прямий привод, static and dynamic behaviors, numerical experiment, non-contact direct drive, статико-динамічні характеристики, одно- та багатоопорні системи, stability criterion, обчислювальний експеримент
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
