
The article presents a scientifically grounded experimental methodology for determining the physico-mechanical characteristics of steel cable meshes, which are increasingly used as flexible membrane elements in modern architectural and engineering structures. The research addresses a gap in standardized approaches to characterizing such materials, which exhibit pronounced orthotropic behavior due to the structural arrangement of steel cables in woven or ferruled configurations.A comprehensive review of international testing practices for membrane materials was conducted, including biaxial tensile tests, central deflection (bulge) tests, uniaxial tear tests, and puncture resistance methods. The article establishes strong methodological analogies between steel meshes and other anisotropic membrane materials such as technical fabrics, PVC membranes, and biological tissues, all of which require specialized multi-axial testing for accurate modeling.The proposed methodology involves securing mesh samples in a rigid test frame and subjecting them to stepwise loading, simulating realistic stress conditions encountered in architectural and structural applications. The article outlines the design of the test rig, including flexible roller-based edge restraints that simulate hinged boundary conditions, force application protocols using incremental weights, and measurement strategies using force sensors and displacement tools. Particular attention is given to capturing orthotropic membrane behavior, including differential stiffness in longitudinal and transverse directions, shear deformability, and geometric nonlinearity under large deformations.Importantly, the article provides a modeling framework based on treating steel meshes as orthotropic membranes within structural analysis software, such as RFEM, using experimentally derived material constants. This allows structural designers to integrate steel mesh components more reliably into load-bearing systems. The methodology aims to bridge the gap between manufacturer data and real-world performance, offering a practical verification tool for both product development and structural validation.The conclusions emphasize the scientific and engineering benefits of adopting a unified testing protocol for steel meshes, aligning with global standards and improving structural safety and economic efficiency. Further experimental work is planned to validate the method with physical testing of various mesh configurations, ultimately leading to standardized procedures for the industry.
У статті подано науково обґрунтовану методику експериментального визначення фізико-механічних характеристик сталевих тросових сіток, які застосовують як гнучкі мембранні елементи в сучасних конструкціях. Зроблено огляд світових підходів для випробувань мембранних матеріалів, включаючи двовісні, рамкові та продавлювальні методики. Запропоновано конструкцію стенда, методику навантаження та систему вимірювань, що дає змогу врахувати ортотропну поведінку сітки та забезпечити її правильне моделювання в інженерному розрахунку.
Steel cable meshes, physico-mechanical properties, orthotropy, experimental testing, load–deflection behavior, test rig, membrane element, сталеві тросові сітки, фізико-механічні характеристики, ортотропність, експериментальні випробування, навантаження-прогин, випробувальна установка, мембранний елемент
Steel cable meshes, physico-mechanical properties, orthotropy, experimental testing, load–deflection behavior, test rig, membrane element, сталеві тросові сітки, фізико-механічні характеристики, ортотропність, експериментальні випробування, навантаження-прогин, випробувальна установка, мембранний елемент
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
