
The rapid development of digital technologies and the exponential growth of data volumes are transforming approaches to customer relationship management, requiring the implementation of comprehensive automated solutions. The main problem remains the fragmentation of information flows between organizational departments and insufficient integration of analytical tools to create a unified customer profile. The lack of effective mechanisms for processing unstructured data limits the possibilities for proactive response to changes in consumer behavior. In this regard, the implementation of intelligent automation systems that optimize customer interaction at all stages of the life cycle is becoming particularly relevant. The research focuses on the integration of machine learning algorithms into CRM systems, in particular the use of LSTM neural networks and gradient boosting for analyzing customer behavioral patterns. The architectural evolution from monolithic structures to distributed microservice models is considered, which ensures adaptability and scalability in the context of business environment fluctuations. Based on the analysis of technological solutions, a list of promising approaches has been formulated, including federated learning, Process Mining and Continuous Intelligence technologies, which ensure a balance between analytical power and maintaining the confidentiality of personal data. Global digital transformation initiatives have been analyzed, which form the regulatory foundation for the implementation of innovative mechanisms for processing customer data. The integration of quantum computing and neuromorphic processors into CRM systems significantly increases the speed of analytical operations, providing complex query processing in real time. The conclusion is made about the feasibility of creating adaptive data processing architectures, optimized for balancing between performance and energy efficiency in accordance with the contextual requirements of the business environment
Дослідження зосереджується на інтеграції алгоритмів машинного навчання в CRM-системи, використанні нейронні мережі типу LSTM та градієнтного бустингу для аналізу поведінкових патернів клієнтів. Розглянуто архітектурну еволюцію від монолітних структур до розподілених мікросервісних моделей, що забезпечує адаптивність та масштабованість у контексті флуктуацій бізнес-середовища. На основі аналізу технологічних рішень сформульовано перелік перспективних підходів, включно з федеративним навчанням, технологіями Process Mining та Continuous Intelligence. Вони забезпечують балансування між аналітичною потужністю та збереженням конфіденційності персональних даних
CRM-системи, штучний інтелект, машинне навчання, автоматизація бізнес-процесів, цифрова трансформація, artificial intelligence, мікросервісна архітектура, customer interaction, business process automation, predictive analytics, machine learning, microservice architecture, digital transformation, обробка даних, персоналізація, предиктивна аналітика, клієнтська взаємодія, CRM systems, data processing, personalization
CRM-системи, штучний інтелект, машинне навчання, автоматизація бізнес-процесів, цифрова трансформація, artificial intelligence, мікросервісна архітектура, customer interaction, business process automation, predictive analytics, machine learning, microservice architecture, digital transformation, обробка даних, персоналізація, предиктивна аналітика, клієнтська взаємодія, CRM systems, data processing, personalization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
