
It was shown that designing heat-mass exchange processes and devices requires the methods of non-destructive measurement of the real surface area of such an exchange. Since this surface is, usually, very complicated, convolutions of images, obtained in the computer tomograph were proposed. Tomograms of synthetic granite, confirming the technical feasibility of such analysis method and its informativeness in terms of further heterogeneous structure investigation were obtained.Three types of convolutions: convolution in the form of Hausdorff dimensions of the section boundaries, convolution using contraction mapping and convolution using parabolic transformation were considered. The presence of a maximum on the dependence of the heat-mass exchange rate on the working surface convolution results, which allows to formulate and solve the problems of optimizing the parameters of technological processes and designs of heat-mass exchange devices was theoretically justified and experimentally confirmed.Practical testing of the proposed optimization method in designing the packed absorber was performed. As a result of using the proposed method, an increase in the absorber performance by 16-23% without increasing its size was achieved.
Показано, что проектирование процессов и аппаратов тепломассообмена нуждается в методах неразрушающего измерения площади обменной поверхности. Для этого предложены свертки изображений, получаемых в компьютерном томографе. Экспериментально подтверждено наличие максимума на зависимости интенсивности тепломассообмена от значений таких сверток, что позволяет ставить и решать задачи оптимизации параметров технологических процессов и конструкций обменных аппаратов.
Показано, що проектування процесів і апаратів тепломасообміну потребує методів неруйнівного вимірювання площі обмінної поверхні. Для цього запропоновані згортки зображень, які отримуються в комп'ютерному томографі. Експериментально підтверджена наявність максимуму на залежності інтенсивності тепломасообміну від значень таких згорток, що дозволяє ставити та розв’язувати задачі оптимізації технологічних процесів і конструкцій обмінних апаратів.
heat-mass exchange; heat-mass exchange surface; heterogeneous flows; computer tomogram; fractal convolution, УДК 621.6.035: 620.1.08, тепломасообмін; поверхня тепломасообміну; гетерогенні матеріали; комп'ютерна томограма; фрактальна згортка, тепломассообмен; поверхность тепломассообмена; гетерогенные материалы; компьютерная томограмма; фрактальная свертка
heat-mass exchange; heat-mass exchange surface; heterogeneous flows; computer tomogram; fractal convolution, УДК 621.6.035: 620.1.08, тепломасообмін; поверхня тепломасообміну; гетерогенні матеріали; комп'ютерна томограма; фрактальна згортка, тепломассообмен; поверхность тепломассообмена; гетерогенные материалы; компьютерная томограмма; фрактальная свертка
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
