
The article examines the features of the use of data from open sources of information, special approaches and techniques in the system of marketing research of enterprises. Improving approaches to integration into modern marketing information systems of modern content analysis tools have been developed and tested, which organically provides constructive synergy of applied methods and means of neuro-fuzzy modeling and clustering of information arrays, statistical analysis of information units including potential and actual consumers. The modern methodological tools of machine learning were tested on the basis of the author’s approaches to detecting "fakes" (unreliable information) in the formation of situational awareness of company management, identifying trends in target markets, analytical processing of changes associated with high risks and uncertainties for business. It is shown that the great variability of the modern information environment (data, content) creates significant prerequisites and significant combinatorial opportunities for generating distorted information in different ways, as well as the dissemination of the latter. Possibilities for detecting inaccurate information (fakes) in the information field of a particular product market have been worked out. Comparison of the results of different models based on the confusion matrix showed that two of the four learning models, namely the neural network and the "random forest" model, did well enough to assess the reliability ("fake") messages. The recommendations on the organization of the formation of source data from open sources of information, improving the quality and reliability of their processing and successful integration of marketing and commercial analytics systems have been constructively developed.
У статті досліджено особливості використання даних з відкритих джерел інформації, спеціальних підходів та прийомів в системі маркетингових досліджень підприємств. Розроблено та апробовано удосконалюючі підходи щодо інтеграції в існуючі маркетингові інформаційні системи сучасного інструментарію контент-аналізу. Здійснено апробацію сучасних методичних інструментів машинного навчання на базі авторських підходів щодо виявлення «фейків» (недостовірної інформації) при формуванні ситуаційної обізнаності менеджменту компаній, аналітичного опрацювання змін, що пов’язані з високими ризиками і невизначеністю перспектив для бізнесу. Конструктивно опрацьовано рекомендації щодо організації формування вихідних масивів даних з відкритих джерел інформації, підвищення якості та достовірності їх опрацювання та успішної інтеграції системах маркетингової і комерційної аналітики.
machine learning, marketing, достовірність інформації, комерційна діяльність, менеджмент, open data, відкриті дані, машинне навчання, business, reliability of information, management
machine learning, marketing, достовірність інформації, комерційна діяльність, менеджмент, open data, відкриті дані, машинне навчання, business, reliability of information, management
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
