Powered by OpenAIRE graph
Found an issue? Give us feedback

Method of the shortest paths in the increasing problems of matchings

Method of the shortest paths in the increasing problems of matchings

Abstract

У застосуваннях теорії графів широку популярність отримала задача про паросполучення. Вона полягає в знаходженні в заданому графі паросполучення з найбільшою кількістю ребер – максимального паросполучення. Узагальненям цієї задачі є задача про зважене паросполучення. Класичний алгоритм Едмондса для знаходження найбільшого зваженого паросполучення у недводольному графі характеризується трудомісткістю ( ). 4 O V Відома задача про зважене паросполучення у довільному графі H з n вершинами зводиться до однієї з задач про паросполучення для дводольного графа з 2n вершинами. Максимальне паросполучення графа H з мінімальною сумою ваг ребер, заданих матрицею nij c ][ , знаходиться за час ( ) 3 O n після впорядкування за незменшенням значень ij c , розташованих над головною діагоналлю.

In the applications of graph theory, the matching task has received a wide recognition. It consists in determination in a given graph matching with the highest number of edges i.e. the maximum matching. A generalization of this problem is a problem in the weighted matching. Classic Edmondsalgorithm for finding the maximum weighted matching in non-bipartite graph is characterized by complexity A well-known problem of the weighted matching in an arbitrary graph with tops reduced to one of the tasks of the matching for a dicotyledonous graph with tops. Maximal matching of the graph with the minimum sum of scales of the ribs set by a matrix is found in a time after organization on the undecrease of values , located above the main diagonal.

Keywords

matchings; maximum matching; the problem of weighted matching, паросполучення; максимальне паросполучення; задача про зважене паросполучення

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold