Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Secret sharing scheme based on the Goldwasser-Goldrich-Halevi cryptosystem

Authors: Лiхачов, Артемiй Дмитрович; Олiйник, Богдана Вiталiївна;

Secret sharing scheme based on the Goldwasser-Goldrich-Halevi cryptosystem

Abstract

With the development of quantum technologies, the issue of research and implementation of cryptographic primitives based on complex problems for quantum computing becomes relevant. Such cryptographic primitives are resistant to quantum cryptanalysis. Examples of problems with exponential complexity for quantum computing is lattice problems such as finding the shortest vector or finding the closest vector. One of the first and most famous quantum-resistant cryptosystems that use lattice problems as the basis of its mathematical apparatus is the Goldwasser-Goldrich-Halevi cryptosystem.A secret distribution scheme is a fundamental cryptographic primitive that allows the distribution of a secret among a set of participants while the secret recovery is possible only when all or a certain part of the participants (the threshold of participants) is authorized. Also, a necessary condition for a secret distribution scheme is the impossibility of individual participants, or groups of participants whose number is less than the threshold, to recover the secret. Variants of constructing secret sharing schemes on various mathematical models, including lattices, are currently being actively studied since they allow for security multiparty calculations and secure information dissemination by distributing the original data between different servers. It is also used for constructing compilers of schemes with protection against leakage, etc. In this paper, a new quantum-stable n-threshold secret sharing scheme for n participants, based on the Goldwasser-Goldrich-Halevi cryptosystem, is proposed.

З розвитком квантових технологiй стає актуальним питання про дослiдження та впровадження криптографiчних примiтивiв, що базуються на складних задачах для квантових обчислень. Такi криптографiчнi примiтиви є стiйкими щодо квантового криптоаналiзу. Прикладом задач, що мають експоненцiйну складнiсть для квантових обчислень, є задачi на решiтках, такi як пошук найкоротшого вектора або пошук найближчого вектора. Однiєю з перших i найвiдомiших квантово-стiйких криптосистем, що в основi свого математичного апарату використовує задачi на решiтках, є криптосистема Голдвасcер-Голдрiха-Халевi.Схема розподiлення секрету є фундаментальним криптографiчним примiтивом, що допускає розподiлення секрету мiж множиною учасникiв, при цьому вiдновлення секрету можливе тiльки при авторизацiї всiх або певної частини учасникiв (порогу учасникiв). Також необхiдною умовою схеми розподiлення секрету є неможливiсть окремих учасникiв, або груп учасникiв, кiлькiсть яких менша за порiг, вiдновити секрет.Варiанти побудови схем розподiлу секрету на рiзних математичних моделях, у тому числi на решiтках, наразi активно дослiджуються, оскiльки вони дозволяють проводити надiйнi багатостороннi обчислення, безпечно поширювати iнформацiю шляхом поширення i розподiлення оригiналу даних мiж рiзними серверами, для побудови компiляторов схем iз захистом вiд витоку тощо. У цiй роботi запропоновано нову квантово-стiйку n-порогову схему розподiлу секрету для n учасникiв, що базується на криптосистемi Голдвасcер-Голдрiха-Халевi.

Keywords

алгоритм Бабаї, асиметричний алгоритм шифрування, Goldwasser-Goldrich-Halevi cryptosystem, integer lattice, secret sharing scheme, asymmetric encryption algorithm, схема розподiлу секрету, цiлочисельна решiтка, криптосистема Голдвасcер-Голдрiха-Халевi, Babai algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!