Powered by OpenAIRE graph
Found an issue? Give us feedback

EXTRACTION OF ORGANOSOLV PULP AND PRODUCTION OF NANOCELLULOSE FROM HEMP FIBRES

EXTRACTION OF ORGANOSOLV PULP AND PRODUCTION OF NANOCELLULOSE FROM HEMP FIBRES

Abstract

Background. The use of cellulose and nanocellulose instead of synthetic polymers makes it possible to improve the consumer properties and environmental friendliness of composite materials. Therefore, the development of technologies for the production of organosolv pulp and nanocellulose from plant raw materials, in particular from hemp fibres, is an urgent scientific and practical problem. Objective. The purpose of the paper is to obtain pulp from hemp fibres by the peracetic method and to study the effect of the concentration of sulfuric acid and the temperature of hydrolysis of organosolv pulp on the quality parameters of hemp nanocellulose. Methods. Treatment of hemp fibres was performed in two stages: alkaline extraction and organosolv cooking at a temperature of 97±2 °C. Nanocellulose was obtained by hydrolysis with a solution of sulfuric acid of various concentrations. The resulting nanocellulose was examined by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM). Results. Organosolv hemp pulp with a residual lignin content of 0.16% and an ash content of 0.08% was obtained. The nanocellulose particles obtained from it had a transverse size of 8–36 nanometers and a length of several micrometers. Nanocellulose films had high mechanical properties: density up to 1.54 g/cm3 and tensile strength up to 60 MPa. Conclusions. Carrying out thermochemical treatment of hemp fibres in two stages makes it possible to obtain pulp with a minimum residual content of lignin and minerals, which is suitable for the production of nanocellulose. Nanocellulose has been successfully isolated from organosolv hemp pulp by acid hydrolysis. Subsequent ultrasonic treatment allows obtaining a stable nanocellulose gel with high mechanical properties.

Проблематика. Применение вместо синтетических полимеров целлюлозы и наноцеллюлозы дает возможность улучшить потребительские свойства и экологичность композитных материалов. Поэтому разработка технологий получения из растительного сырья, в частности из волокон конопли, является актуальной научно-практической проблемой. Цель исследования. Получить целлюлозу из волокон конопли перуксусным методом и изучить влияние концентрации серной кислоты и температуры гидролиза органосольвентной целлюлозы на показатели качества конопляной наноцеллюлозы. Методика реализации. Обработку волокон конопли производили в две стадии: щелочная экстракция и органосольвентная варка при температуре 97 ± 2 °C. Наноцеллюлозу получали путем гидролиза раствором серной различной концентрации. Полученную наноцеллюлозу исследовали методами сканирующей электронной микроскопии (СЭМ), инфракрасной спектроскопии с Фурье-превращением (FTIR), атомной силовой микроскопией (AFM). Результаты исследования. Получена органосольвентная конопляная целлюлоза с остаточным содержанием лигнина 0,16 % и зольностью 0,08 %. Образовавшиеся в процессе гидролиза частицы наноцеллюлозы имели поперечный размер 8–23 нанометров и длину до нескольких микрометров. Наноцеллюлозные пленки обладали высокими механическими свойствами: плотностью до 1,54 г/см3 и прочностью на разрыв до 60 МПа. Выводы. Проведение термохимической обработки волокон конопли в два этапа позволяет получить целлюлозу с минимальным остаточным содержанием лигнина и минералов, которая пригодна для производства наноцеллюлозы. Наноцеллюлоза была успешно выделена из органосольвентной конопляной целлюлозы посредством процесса кислотного гидролиза. Последующая ультразвуковая обработка позволяет получить стабильный наноцеллюлозный гель с высокими механическими свойствами.

Проблематика. Застосування замість синтетичних полімерів целюлози та наноцелюлози дає можливість покращити споживчі властивості та екологічність композитних матеріалів. Тому розробка технологій отримання з рослинної сировини, зокрема волокон конопель, органосольвентної целюлози та наноцелюлози є актуальною науково-практичною проблемою. Мета дослідження. Отримати целюлозу з волокон конопель пероцтовим методом та вивчити вплив концентрації сульфатної кислоти та температури гідролізу органосольвентної целюлози на показники якості конопляної наноцелюлози. Методика реалізації. Обробку волокон конопель виконували в дві стадії: лужна екстракція й органосольвентне варіння за температури 97 ± 2 °C. Наноцелюлозу отримували шляхом гідролізу органосольвентної целюлози розчином сульфатної кислоти різної концентрації. Отриману наноцелюлозу досліджували методами скануючої електронної мікроскопії (СЕМ), інфрачервоної спектроскопії з Фур’є перетворенням (FTIR), атомною силовою мікроскопією (AFM). Результати дослідження. Отримано органосольвентну конопляну целюлозу із залишковим вмістом лігніну 0,16 % і зольністю 0,08 %. Одержані з неї частинки наноцелюлози мали поперечний розмір 8–23 нанометрів і довжину до декількох мікрометрів. Наноцеллюлозні плівки мали високі механічні показники: щільність до 1,54 г/см3 і міцність на розрив до 60 МПа. Висновки. Проведення термохімічної обробки волокон конопель у два етапи дає можливість отримати целюлозу з мінімальним залишковим вмістом лігніну та мінералів, яка придатна для виробництва наноцелюлози. Наноцелюлоза була успішно виділена з органосольвентної конопляної целюлози за допомогою процесу кислотного гідролізу. Подальша ультразвукова обробка дає можливість отримати стабільний наноцелюлозний гель з високими механічними властивостями.

Keywords

волокно конопли, кислотный гидролиз, hemp fiber, organosolv pulp, органосольвентна целюлоза, наноцелюлоза, acid hydrolysis, органосольвентная целлюлоза, наноцеллюлоза, волокно конопель, кислотний гідроліз, nanocellulose

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold