Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Information and cont...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Study of the system of passenger transportation by higher-speed and conventional trains based on the methods of analysis of complex networks

Study of the system of passenger transportation by higher-speed and conventional trains based on the methods of analysis of complex networks

Abstract

In this paper, a comprehensive analysis of Ukraine’s passenger rail system is conducted on the network graph of high-speed and conventional trains for 2018-2019, employing methods from complex network theory. The study aims to reveal the spatial-structural patterns governing passenger flows, to identify the role of key hub stations, and to formulate scientifically grounded recommendations for optimising the route network. Vertex degrees (in-, out- and total-degree) were clustered, and it was shown that the distribution of total degrees follows a power-law with scale-free exponent α ≈ 2.5, confirming the network’s scale-free, self-similar character. The following topological macro-parameters were computed: network density 0.0369, diameter 5, effective diameter 4, Watts-Strogatz clustering coefficient 0.334 and transitivity 0.0605. Strongly and weakly connected component analyses further characterised the graph’s cohesion. Node centrality was evaluated via harmonic closeness and betweenness measures, while Pearson and Spearman correlation coefficients between in-, out- and total-degrees demonstrated pronounced assortative mixing, indicative of a clear hierarchical structure. The network exhibits marked centralisation, with short path lengths between major stations and moderate local clustering. Based on these findings, we propose decentralising the route network by developing alternative links among peripheral stations, strengthening connectivity within weakly integrated components, and prioritising the modernisation of principal hub stations. These results provide a solid foundation for both strategic and tactical management of Ukraine’s railway infrastructure under conditions of structural transformation and external challenges.

У статті проведено мережевий аналіз пасажирської залізничної системи України за графом мережі руху швидкісних і звичайних поїздів за 2018-2019 рр. із використанням методів теорії складних мереж. Виявлено, що розподіл степенів вершин підпорядкований степеневому закону, мережа має високу централізованість, асортативність і короткий ефективний діаметр. Оцінено коефіцієнт кластеризації, транзитивність, центральність степеня, посередництва та гармонійної близькості. На основі результатів запропоновано рекомендації щодо децентралізації маршрутів, посилення зв’язності периферійних залізничних вокзалів. Проведені дослідження можуть бути використані для стратегічного і тактичного управління розвитком залізничної інфраструктури України в умовах структурних трансформацій і зовнішніх викликів.

Keywords

залізнична система, макроаналіз, пасажирський поїзд, поїздопотік, мережа, розклад руху, безмасштабність, комплексні мережі, railway system, macro analysis, passenger train, train flow, network, timetable, scale-free, complex networks

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold