Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sistemnì Doslìdženâ ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integral representations of positive definite kernels

Integral representations of positive definite kernels

Abstract

The paper proposes proof of the possibility of an integral representation of a positive definite kernel of two pairs of variables. Using this kernel, we use the technique of constructing a new Hilbert space in which symmetric differential operators formally commute. In this case, the kernel satisfies a system of differential equations with partial derivatives. It is known that a kernel given in a subdomain of the real plane, generally speaking, does not always imply an extension to the entire plane. This possibility is related to the problem of the existence of a commuting self-adjoint extension of symmetric operators. The author applies his own results related to a commuting self-adjoint extension in a wider Hilbert space. The resulting representation in the form of an integral of elementary positive-definite kernels with respect to the spectral measure generated by the resolution of the identity of the operators allows us to extend the positive-definite kernel to the entire plane.

Доведено можливість інтегрального зображення додатно визначеного ядра від двох пар змінних. Використано техніку побудови за цим ядром нового гільбертового простору, у якому формально комутують симетричні диференціальні оператори. При цьому ядро задовольняє систему диференціальних рівнянь із частинними похідними. Відомо, що ядро, задане в підобласті дійсної площини, не завжди припускає продовження на всю площину. Така можливість зумовлена проблемою існування комутувального самоспряженого розширення симетричних операторів. Застосовано результати, отримані автором, пов’язані з комутувальним самоспряженим розширенням у більш широкому гільбертовому просторі. Одержане інтегральне зображення за спектральною мірою, породженою розкладом одиниці операторів, дає змогу продовження додатно визначеного ядра на всю площину.

Keywords

індекс дефекту, self-adjoint operator, Hilbert space, symmetric operator, operator extension, самоспряжений оператор, додатно визначене ядро, scalar product, positive definite kernel, скалярний добуток, гільбертовий простір, продовження оператора, симетричний оператор, defect index

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold