Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

Порівняльний аналіз методів найближчих сусідів та матричної факторизації в рекомендаційних системах

Authors: Chertov, Oleg; Brun, Armelle; Boyer, Anne; Aleksandrova, Marharyta;

Порівняльний аналіз методів найближчих сусідів та матричної факторизації в рекомендаційних системах

Abstract

Unlike other works, this paper aims at searching a connection between two most popular approaches in recommender systems domain: Neighborhood-based (NB) and Matrix Factorization-based (MF). Provided analysis helps better understand advantages and disadvantages of each approach as well as their compatibility.While NB relies on the ratings of similar users to estimate the rating of a user on an item, MF relies on the identification of latent features that represent the underlying relation between users and items. However, as it was shown in this paper, if latent features of Non-negative Matrix Factorization are interpreted as users, the processes of rating estimation by two methods become similar. In addition, it was shown through experiments that in this case elements of NB and MF are highly correlated. Still there is a major difference between Matrix Factorization-based and Neighborhood-based approaches: the first one exploits the same set of base elements to estimate unknown ratings (the set of latent features), while the second forms different sets of base elements (in this case neighbors) for each user-item pair.

В статье описана взаимосвязь между двумя методами коллаборативной фильтрации: методом ближайших соседей и методом матричной факторизации, которые, обычно, представляются как противоположные. В данной работе показано, что оба подхода являются взаимосвязанными: процесс оценки рейтингов является похожим и, при определенных условиях, элементы, которые используются обоими подходами, имеют высокое значение взаимной корреляции, но не являются идентичными.

В статті описаний взаємозв’язок між двома методами колаборативної фільтрації: методом найближчих сусідів та методом матричної факторизації, які, зазвичай, представляються як протилежні. В даній роботі показано, що обидва підходи є взаємопов’язаними: процес оцінки рейтингів є схожим і, за певних умов, елементи, що використовуються обома підходами, мають високе значення взаємної кореляції, але не є ідентичними.

Keywords

UDC 004.942, collaborative filtering; neighborhood-based recommendations; matrix factorization-based recommendations; feature interpretation, коллаборативная фильтрация; метод ближайших соседей; матричная факторизация; интерпретация латентных характеристик, колаборативна фільтрація; метод найближчих сусідів; матрична факторизація; інтерпретація латентних характеристик

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold