Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Біомедична інженерія...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

МНОГОКРИТЕРИАЛЬНЫЙ АЛГОРИТМ ШАГОВОЙ РЕГРЕССИИ

МНОГОКРИТЕРИАЛЬНЫЙ АЛГОРИТМ ШАГОВОЙ РЕГРЕССИИ

Abstract

The problem of structural-parametric synthesis of multiple linear regression models on the input variables in conditions of partial multicollinearity is solved in the work. The partial multicollinearity phenomenon of input arguments conduces to a variance estimates increase of the regression model parameters, and makes difficult to explain the impact of input variables to the dependent variable. Substantial multicollinearity conduces to impossibility of output estimation model. Classical stepwise procedures of the factors selection do not solve the problem of multicollinearity. Thus, the design of structural-parametric multiple regression methods considering limitation of partial multicollinearity are relevant

В работе решается задача структурно-параметрического синтеза модели множественной линейной регрессии в условиях частичной мультиколлинеарности входных переменных. Алгоритм осуществляет исключение переменных по оценке мультиколлинеарности методом Фаррара-Глобера. Оптимизация параметров шагового алгоритма осуществляется в соответствии с внешним критерием - нормированная относительная среднеквадратичная ошибка на проверочной выборке данных. Рассмотрен пример моделирования эффективности функционального состояния дыхательной системы пациента по величине потребления кислорода. Сравнение результатов стандартного Stepwise и предложенного алгоритмов показало преимущество последнего на экзаменационной выборке данных

Keywords

принципы самоорганизации; шаговый алгоритм; многомерная линейная регрессия; мультиколлинеарность; метод Фаррара-Глобера; внешний критерий; функциональное состояние; дыхательная система, principles of self-stepping algorithm; multivariate linear regression; multicollinearity method by Farrar-Glauber; external criterion; functional status, respiratory system

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold