Powered by OpenAIRE graph
Found an issue? Give us feedback

Recognition of predetermined signals in the automated radio monitoring problems

Recognition of predetermined signals in the automated radio monitoring problems

Abstract

In practice, besides the signals predetermined in a probabilistic sense, the unknown signals for which the learning sampling cannot be obtained. In this case the classical recognition methods cannot be used, this results in the need for development of nontraditional signals recognition methods taking into account the presence of the unknown signals class. The distinctive feature of the given work is the signals recognition methods concretizing for the case of the signals description with probabilistic models in the form of auto regression processes and mixtures of random signals. The decision results of the typical recognition problems in automated radio monitoring with using this recognition methods are considered. When solving the problems of the specified radio transmission types recognition, the decision rule based on the signals’ auto regression model was used. Investigations were performed using the statistical simulation method with the samplings of radio signals for 10 different types of radio transmissions peculiar to the problems of the automated radio monitoring. The mean probability of correct recognition 0,95 was obtained. When solving another problem of radio monitoring - recognition of the type radio signals modulation - the decision rule, based on the type of the model of distributions’ mixtures was used. Investigations were performed with the sampling of radio signals from 5 different types of modulation typical for radio monitoring. The mean probability of correct recognition 0.9 was obtained.

Характерной особенностью данной работы является то, что в ней обсуждается решение задач распознавания заданных сигналов при автоматизированном радиоконтроле. Приводятся результаты исследований методов селекии и распознавания заданных сигналов, основанных на разных вероятностных моделях, в частности, авторегрессионных процессов и смеси распределений сигналов.

Характерною особливістю даної роботи є те, що в ній обговорюється вирішення задач розпізнавання заданих сигналів при автоматизованому радіоконтролі. Наводяться результати досліджень методів селекції та розпізнавання заданих сигналів, основаних на різних ймовірнісних моделях, зокрема, авторегресійних процесів і суміші розподілів сигналів.

Keywords

УДК 621.391, signal, probabilistic model, auto regression processes, mixtures of standard distributions, recognition method, automated radio monitoring., сигнал, вероятностная модель, авторегрессионный процесс, смесь распределений, метод распознавания, автоматизированный радиоконтроль., сигнал, ймовірнісна модель, авторегресійний процес, суміш розподілів, метод розпізнавання, автоматизований радіоконтроль.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold