Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sistemnì Doslìdženâ ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improving the accuracy of neural network exchange rate forecasting using evolutionary modeling methods

Improving the accuracy of neural network exchange rate forecasting using evolutionary modeling methods

Abstract

A set of models of feedforward neural networks is created to obtain operational forecasts of the time series of the hryvnia/dollar exchange rate. It is shown that using an evolutionary algorithm for the total search of basic characteristics and a genetic algorithm for searching the values of the matrix of neural network weight coefficients allows optimizing the configuration and selecting the best neural network models according to various criteria of their training and testing quality. Based on the verification of forecasting results, it is established that the use of neural network models selected by the evolutionary modelling method increases the accuracy of forecasting the hryvnia/dollar exchange rate compared to neural network models created without the use of a genetic algorithm. The accuracy of the forecasting results is confirmed by the method of inverse verification using data from different retrospective periods of the time series using the criterion of the average absolute percentage error of the forecast.

Створено комплекс моделей прямошарових нейронних мереж для отримання оперативних прогнозів часового ряду валютного курсу гривні/долара. Показано, що використання еволюційного алгоритму тотального пошуку базових характеристик і генетичного алгоритму пошуку значень матриці вагових коефіцієнтів нейромереж дає змогу оптимізувати конфігурацію та відібрати кращі нейромережеві моделі за різними критеріями якості їх навчання та тестування. На основі верифікації результатів прогнозування встановлено, що використання відібраних методом еволюційного моделювання нейромережевих моделей дозволяє підвищити точність прогнозу курсу гривні/долара порівняно з нейромережевими моделями, які були створені без застосування генетичного алгоритму. Достовірність одержаних результатів прогнозування підтверджено методом інверсної верифікації за даними різних ретроспективних періодів часового ряду з використанням критерію середньої абсолютної відсоткової похибки прогнозу.

Keywords

accuracy, neural network, прогнозування, forecasting, exchange rate, часовий ряд, генетичний алгоритм, валютний курс, еволюційне моделювання, genetic algorithm, оптимізація, evolutionary modeling, time series, нейронна мережа, optimization, точність

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold