Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bionics of Intellige...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Methods Of Artificial Neural Networks for Adaptive Knowledge Testing

Methods Of Artificial Neural Networks for Adaptive Knowledge Testing

Abstract

Под адаптивным тестовым контролем понимают компьютеризированную систему научно обоснованной проверки и оценки результатов обучения, имеет высокую эффективность за счет оптимизации процедур генерации, предъявления и оценки результатов выполнения адаптивных тестов, основанная на методах построения и оптимизации логических сетей. Алгоритмы подбора и предъявления задач строятся по принципу обратной связи, когда при правильном ответе субъекта обучения очередное задание выбирается более тяжелым, а неверный ответ вызывает предъявления следующего более легкого задания, чем то, на которое субъектом обучения была дана неверная ответ. Также имеется возможность задания дополнительных вопросов по темам, которые субъект обучения знает не очень хорошо для более точного выяснения уровня знаний в данных областях. Выбор алгоритмов тестирования пока фактически ограничен формами представления тестовых заданий и алгоритмами оценки результатов тестирования. Достижения более высоких результатов и повышения мотивации обучения в конечном итоге является основной целью тестирования знаний. Для определения базового алгоритма, необходимо привести сценарий работы системы. В его основе лежит модель принятия экзамена преподавателем у студента, как модель адаптивного тестирования. Такой выбор сценария работы системы обусловлен тем, что, во-первых, данная процедура исторически хорошо формализована, во-вторых, при проектировании тестов, их разработчику необходимо опираться на общепринятые, известные и используемые им методы с минимальной модификацией.

Під адаптивним тестовим контролем розуміють комп’ютеризовану систему науково обґрунтованої перевірки й оцінювання результатів навчання, що має високу ефективність за рахунок оптимізації процедур генерації, пред’явлення й оцінки результатів виконання адаптивних тестів, що заснована на методах побудови та оптимізації логічних мереж. Алгоритми підбору й пред’явлення завдань будуються за принципом зворотного зв’язку, коли при правильній відповіді суб’єкта навчання чергове завдання вибирається більш важким, а невірна відповідь спричиняє пред’явлення наступного більш легкого завдання, ніж те, на яке суб’єктом навчання була дана невірна відповідь. Також є можливість завдання додаткових питань по темах, які суб’єкт навчання знає не дуже добре для більш точного з’ясування рівня знань у даних областях. Вибір алгоритмів тестування наразі фактично обмежений формами представлення тестових завдань і алгоритмами оцінювання результатів тестування. Досягнення більш високих результатів і підвищення мотивації навчання в остаточному підсумку є основною метою тестування знань. Для визначення базового алгоритму, необхідно навести сценарій роботи системи. У його основі лежить модель приймання іспиту викладачем у студента, як модель адаптивного тестування. Такий вибір сценарію роботи системи обумовлений тим, що, по-перше, дана процедура історично добре формалізована, по-друге, при проектуванні тестів, їх розробнику необхідно спиратися на загальноприйняті, відомі й використовувані їм методи з мінімальною модифікацією.

Adaptive test control is a computerized system of scientifically based verification and evaluation of learning outcomes, which is highly effective by optimizing the procedures for generating, presenting and evaluating the results of adaptive tests, based on methods of building and optimizing logical networks. Algorithms for selection and presentation of tasks are based on the principle of feedback, when the correct answer of the subject of training is the of training the wrong answer was given. It is also possible to ask additional questions on topics that the subject does not know very well to clarify the level of knowledge in these areas. The choice of testing algorithms is currently actually limited by the forms of presentation of test tasks and algorithms for evaluating test results. Achieving higher results and increasing the motivation to learn is ultimately the main goal of testing knowledge. To determine the basic algorithm, it is necessary to provide a scenario of the system. It is based on the model of taking the exam by a teacher as a model of adaptive testing. This choice of the scenario of the system is due to the fact that, firstly, this procedure is historically well formalized, and secondly, when designing tests, their developer must rely on common, known and used methods with minimal modification.

Keywords

АЛГЕБРА КОНЕЧНЫХ ПРЕДИКАТОВ, DISTANCE EDUCATION, ДИСТАНЦІЙНА ОСВІТА, MODEL OF SUBJECT OF LEARNING, ДИСТАНІЙНЕ ТЕСТУВАННЯ ЗНАНЬ, LOGICAL NETWORK, МОДЕЛЬ СУБ’ЄКТА НАВЧАННЯ, ДИСТАНЦІОННОЕ ОБРАЗОВАНИЕ, ДИСТАНЦИОННОЕ ТЕСТИРОВАНИЕ ЗНАНИЙ, ЛОГІЧНА МЕРЕЖА, МОДЕЛЬ ОБУЧАЕМОГО, ALGEBRA OF FINITE PREDICATES, DISTANCE TESTING OF KNOWLEDGE, ЛОГИЧЕСКАЯ СЕТЬ, АЛГЕБРА СКІНЧЕННИХ ПРЕДИКАТІВ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold