Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Опір матеріалів і те...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rational topology of steel i-beams with various gradients of changing wall height and shelf width at specified sections along the length of the beam

Rational topology of steel i-beams with various gradients of changing wall height and shelf width at specified sections along the length of the beam

Abstract

A methodological approach has been developed for determining the rational topology of steel I-beams with variable stiffness under uniformly distributed loading along the beam length. It has been shown that for such beams, with varying web height and flange width, the maximum stress does not occur in the section where the maximum bending moment acts. The problem of finding the optimal cross-sectional height is solved using the Lagrange multipliers method in conjunction with the Kuhn–Tucker conditions. For steel I-beams with variable web height and flange width, the sufficient condition for structural optimality is confirmed: the area of the web is equal to the total area of the two flanges. However, under linear reduction of web height and flange width in the direction of decreasing bending moments, new critical cross-sections arise along the beam length in which the normal stresses in the flanges exceed those in the section with the maximum bending moment. This indicates that beams with variable stiffness may have multiple governing sections. An improved physical–mathematical model of the stress–strain state of I-beams in bending is proposed. A steel I-beam with the proposed new topology has the ability to adapt to its stress–strain state by introducing reverse variation of flange width: in selected sections, the beam height decreases or remains constant, while the flange width and accordingly the flange cross-sectional area increases relative to the section where the maximum bending moment acts. This improved design approach allows for achieving stress levels in all current cross-sections that do not exceed the yield strength of steel along the entire length of the I-beam. The numerical studies conducted demonstrate the possibility of finding new rational design solutions for variable cross-section steel I-beams. The existence of an admissible set of rational solutions based on the obtained results has also been confirmed. Thus, the problem of determining the rational topology of steel I-beams with linearly varying flange width and web height represents a design task with appropriately formulated and adequate design condition.

Розроблено методичний підхід до пошуку раціональної топології сталевих двотаврових балок змінної жорсткості під час дії рівномірно розподіленого навантаження по довжині конструкції. Показано, що для таких балок зі змінною висотою стінки і полиць максимальна напруга не виникає в перерізі, де діє максимальний згинальний момент. Задача пошуку оптимальної висоти перерізу вирішується з використанням методу множників Лагранжа та з використанням умов Куна-Такера. Для сталевих двотаврових балок зі змінною висотою стінки і шириною полиць підтверджено достатні умови оптимальності всієї конструкції: рівність площі стінки дорівнює площі двох полиць. Але при лінійному зменшенні висоти стінки і ширини полиць у бік зменшення згинальних моментів по довжині конструкції маються нові розрахункові перерізи, в яких нормальні напруження в полицях перевищують нормальні напруження в перерізі, де діє максимальний згинальний момент. Це означає, що в балці змінної жорсткості є кілька розрахункових перерізів. Запропонована вдосконалена фізико-математична модель напружено-деформованого стану двотаврової балки при згині. Сталева балка двотаврового перерізу з новою топологією має можливість адаптуватися до напружено-деформованого стану з урахуванням зворотного зміни параметра ширини полів (висота балки у визначеному січенні зменшується або залишається постійною, а ширина і, відповідно, площа поперечного січення полиць збільшується відносно січення, де діє максимальний згинальний момент). Таке удосконалене конструктивне рішення дозволяє вирішити задачу досягнення напруження в поточних перерізах, які не перевищують міцність сталі за границею текучості, по всій довжині сталевої двотаврової балки. Проведені числові дослідження показали можливість знайти нові конструктивні рішення раціональних конструкцій сталевих двотаврових балок змінного перерізу. Також показана допустима множина раціональних рішень за результатами виконаних досліджень. Таким чином, задача пошуку раціональної топології сталевих двотаврових балок з лінійно-змінною шириною полки і висотою стінки є задачею з адекватними умовами проектування.

Keywords

steel beams with different rates of web height and flange width variation in specific segments, сталеві конструкції балок, modeling, раціональна топології сталевої двотаврової балки з адекватними умовами проектування, сталеві балки із різними параметрами швидкості зміни висоти стінки і ширини полиць на окремих ділянках, сталеві двотаврові балки змінного перерізу, objective function, цільова функція, steel beam structures, optimal topology, Lagrange multipliers method, умови Куна-Такера, Kuhn–Tucker conditions, rational topology of steel I-beams with adequately formulated design conditions, оптимальна топологія, метод множників Лагранжа, variable cross-section steel I-beams, моделювання

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold