Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Біомедична інженерія...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MULTIDIMENSIONAL NEO-FUZZY NEURON IN THE MEDICAL DIAGNOSIS OF THYROID DISEASE

MULTIDIMENSIONAL NEO-FUZZY NEURON IN THE MEDICAL DIAGNOSIS OF THYROID DISEASE

Abstract

In the work, the type of neuro-fuzzy networks and the possibilities of the it use for the diagnosis of thyroidd is eases, hyperthyroidism, hypothyroidism and euthyroidism were selected. The selection and improvement of the learning algorithm for the multidimensional neo-fuzzy neuron and the testing of its work on clinical medical data were carriedout. A native application has been created that makes it possible to use a multidimensional neo-fuzzy neuron for medical diagnostic tasks with the calculation of errors in training and testing and the visualization of medical data for a better perception of information by a doctor

В роботі проведено вибір типу нейро-фаззі мереж та можливостей їхнього використання для діагностування захворювань щитовидної залози: гіпертиреозу, гіпотиреозу та еутиреозу. Проведено вибір та удосконалення алгоритму навчання багатовимірного нео-фаззі нейрону та апробацію його роботи на клінічних медичних даних. Створено нативний додаток, який уможливлює використання багатовимірного нео-фаззі нейрону для завдань медичного діагностування із розрахунком помилки при навчанні та тестування і візуалізацією медичних даних для кращого сприйняття інформації лікарем

Keywords

thyroid; neo-fuzzy neuron; hyperthyroidism; medical data; hypothyroidism; euthyroidism; synaptic weights, щитоподібна залоза; нео-фаззі нейрон; гіпертиреоз; медичні дані; гіпотиреоз; еутиреоз; синаптичні ваги

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities