
The article investigates the problem of creating and editing Ukrainian-language texts. The relevance of the study is associated with the important importance of the ability to write a text without linguistic, logical or factual errors, which will contribute to maintaining the authority, rating, reputation of an individual specialist or organization. At the same time, the use of information technologies for checking and correcting Ukrainian-language texts is still poorly studied. The purpose of this work was to study and thoroughly analyze modern, freely accessible online resources for checking and correcting linguistic errors in Ukrainian-language texts. Testing was carried out on the basis of seven online resources: «Language - DNA of the Nation», «UkrainianCorrection», «LanguageTool», «Istio.com», «Аspose.ai», «WordCount» and «ChatGPT». 2 texts were used for testing: lower (43 errors) and higher (70 errors) levels of complexity. It was determined that the optimal option for creating language-normative texts in Ukrainian is independent writing with subsequent correction of the result using information resources and refinement by the user. After all, the difficulties in identifying and correcting errors are associated with the complex morphological structure of the Ukrainian language, the peculiarities of grammatical categories, the phenomena of ambiguity, synonymy, paronymy, etc. in the Ukrainian language. The scientific article provides a thorough analysis of the results of testing the most common modern resources based on conventional algorithms and AI. Based on the results of the study, the conclusions suggest the most effective services that best cope with correcting spelling, punctuation, lexical and grammatical errors. The following methods for further improving neural network resources for editing complex Ukrainian-language texts have been identified: development of new online or offline resources for checking and correcting texts; expansion of text corpora by increasing the number and variety of Ukrainian-language text corpora; replenishment of existing ones and creation of new corpora; new sequential testing of resources and thorough analysis of the results obtained.
У статті досліджено онлайн-сервіси для перевірки й коригування помилок в українськомовних текстах. Здійснено грунтовний аналіз результатів тестування найпоширеніших сучасних ресурсів на звичайних алгоритмах та на основі ШІ. Запропоновано найефективніші сервіси, які найкраще впоралися з виправленням орфографічних, пунктуаційних, лексичних і граматичних помилок. Визначено методи подальшого вдосконалення ресурсів нейромережі для редагування складних українськомовних текстів.
spelling, punctuation, grammar, lexical errors, language norms, штучний інтелект, Ukrainian-language text, ідентифікаця та коригування мовних помилок, орфографічні, пунктуаційні, граматичні, лексичні помилки, artificial intelligence, identification and correction of language errors, українськомовний текст, мовні норми
spelling, punctuation, grammar, lexical errors, language norms, штучний інтелект, Ukrainian-language text, ідентифікаця та коригування мовних помилок, орфографічні, пунктуаційні, граматичні, лексичні помилки, artificial intelligence, identification and correction of language errors, українськомовний текст, мовні норми
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
