
Purpose: Interest to the study of Ag2S and Ag2GeS3 crystals is caused by the presence of high ionic conductivity which nature has not yet been adequately explained. Electronic structure calculations for these compounds are very useful in this regard and their knowledge will help to establish the character of chemical bonding between Ag and S as well as between Ge and S which is necessary for the better understanding of the ionic conductivity mechanism.Methods: This paper presents the calculations of band structure, total and partial densities of states, spatial distribution of valence charge density for Ag2S and Ag2GeS3 crystals performed within density functional theory in the local density approximation (LDA and LDA+U).Results: It follows from the electronic structure calculations that both crystals are the direct-gap semiconductors with the band gap widths Egd = 0.91 eV for Ag2S and Egd = 1.96 eV for Ag2GeS3 calculated in the LDA+U-approximation. The valence band of Ag2GeS3 contains four energetically isolated bunches of occupied bands. Two quasi-core bands in the valence band bottom are formed mainly by sulfur 3s-states with the insignificant impurities of Ge4s-states into the lowest subband and Ge4p-states into the next subband. The second bunch of occupied bands is formed by hybridized Ge4s- and S3p-states. Most difficult is the upper valence subband. Spectrum of density of electronic states N(E) in this region is formed by S3р- and Ag4d-atomic orbitals with the insignificant impurity of Ge4p-states. The results of ab initio of r(r) electronic density calculations showed that the main charge in Ag2S is concentrated on silver atoms and Ag–S bond is predominantly ionic. The nature of r(r) contours in Ag2GeS3 crystal shows the ion-covalent bond type, while Ge–S bond is stronger than Ag–S.Conclusion: From the analysis of crystal structure and valence density distribution maps of Ag2GeS3 it follows that this compound can be attributed to the compounds with Ag-ion transport along channels between the infinite chains formed by corner-sharing [GeS4] tetrahedra.
В локальном приближении теории функционала плотности выполнены расчеты зонной структуры, полной и парциальных плотностей состояний, распределения электронной плотности в Ag2S и Ag2GeS3. По результатам расчета сделан детальный анализ структуры валентных состояний. Показано, что оба соединения являются прямозонными полупроводниками с рассчитанной шириной запрещенной зоны Egd = 0.91 эВ для Ag2S и Egd = 1.96 эВ для Ag2GeS3. Химическая связь в этих соединениях имеет ионную и ковалентную составляющие.
У локальному наближенні теорії функціонала густини виконано розрахунки зонної структури, повної і парціальних густин станів, розподілу електронної густини в Ag2S і Ag2GeS3. За результатами розрахунку проведено детальний аналіз природи валентних станів. Показано, що обидва кристали є прямозонними напівпровідниками з розрахованою шириною забороненої зони Egd = 0.91 еВ для Ag2S і Egd = 1.96 еВ для Ag2GeS3. Хімічний зв'язок в цих сполуках має іонну і ковалентну складові.
Электронная зонная структура; Плотность состояний; Сульфид серебра; Тиогерманат серебра; Распределение валентного заряда, 544.225.22; 544.225.32, 544.225.22;544.225.32, Electronic band structure; Density of states; Silver sulfide; Silver thiogermanate; Distribution of the valence charge, Електронна зонна структура; Густина станів; Сульфід срібла; Тіогерманат срібла; Розподіл валентного заряду
Электронная зонная структура; Плотность состояний; Сульфид серебра; Тиогерманат серебра; Распределение валентного заряда, 544.225.22; 544.225.32, 544.225.22;544.225.32, Electronic band structure; Density of states; Silver sulfide; Silver thiogermanate; Distribution of the valence charge, Електронна зонна структура; Густина станів; Сульфід срібла; Тіогерманат срібла; Розподіл валентного заряду
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
