Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

[Psychosis speech recognition algorithm based on deep embedded sparse stacked autoencoder and manifold ensemble].

Authors: Yi, Zhang; Xiaolin, Qin; Yuan, Lin; Yongming, Li; Pin, Wang; Zuwei, Zhang; Xiaofei, Li;

[Psychosis speech recognition algorithm based on deep embedded sparse stacked autoencoder and manifold ensemble].

Abstract

Speech feature learning is the core and key of speech recognition method for mental illness. Deep feature learning can automatically extract speech features, but it is limited by the problem of small samples. Traditional feature extraction (original features) can avoid the impact of small samples, but it relies heavily on experience and is poorly adaptive. To solve this problem, this paper proposes a deep embedded hybrid feature sparse stack autoencoder manifold ensemble algorithm. Firstly, based on the prior knowledge, the psychotic speech features are extracted, and the original features are constructed. Secondly, the original features are embedded in the sparse stack autoencoder (deep network), and the output of the hidden layer is filtered to enhance the complementarity between the deep features and the original features. Third, the L1 regularization feature selection mechanism is designed to compress the dimensions of the mixed feature set composed of deep features and original features. Finally, a weighted local preserving projection algorithm and an ensemble learning mechanism are designed, and a manifold projection classifier ensemble model is constructed, which further improves the classification stability of feature fusion under small samples. In addition, this paper designs a medium-to-large-scale psychotic speech collection program for the first time, collects and constructs a large-scale Chinese psychotic speech database for the verification of psychotic speech recognition algorithms. The experimental results show that the main innovation of the algorithm is effective, and the classification accuracy is better than other representative algorithms, and the maximum improvement is 3.3%. In conclusion, this paper proposes a new method of psychotic speech recognition based on embedded mixed sparse stack autoencoder and manifold ensemble, which effectively improves the recognition rate of psychotic speech.

Related Organizations
Keywords

Databases, Factual, Psychotic Disorders, Speech Perception, Humans, Speech, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!