
handle: 2318/1931555
Semi-supervised learning has shown its potential in many real-world applications where only few labeled examples are available. However, when some fairness constraints need to be satisfied, semisupervised classification models often struggle as they are required to cope with the lack of sufficient information for predicting the target variable while forgetting its relationships with any sensitive and potentially discriminatory attribute. To address this issue, we propose a fair semi-supervised representation learning architecture that leads to fair and accurate classification results even in very challenging scenarios with few labeled (but biased) instances. We show experimentally that our model can be easily adopted in very general settings, as the learned representations may be employed to train any supervised classifier. Moreover, when applied to several real-world datasets, our method is competitive with state-of-the-art fair semi-supervised approaches.
semi-supervised autoencoder, fairness, deep neural networks
semi-supervised autoencoder, fairness, deep neural networks
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
