Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Разработка алгоритма прогнозирования генерации фотоэлектрической станции : магистерская диссертация

Authors: Mazunina, M. V.;

Разработка алгоритма прогнозирования генерации фотоэлектрической станции : магистерская диссертация

Abstract

Объект исследования — генерация фотоэлектрической станции. Целью данной работы является разработка алгоритма прогнозирования генерации фотоэлектрической станции при помощи интеллектуальных прогнозных моделей на основе структуры решающих деревьев. В рамках работы производится анализ текущей ситуации степени развития и актуальные проблемы отрасли электроэнергетики, представляющие этапы сбора, анализа и предварительной обработки исходных данных, используемых для прогнозирования. В разработанном алгоритме для прогнозирования почасовых объемов генерации фотоэлектрических станций применяются прогнозные модели, основанные на деревьях решений. Благодаря применению различных моделей для прогнозирования генерации при смене сезонов (зима, весна, лето, осень), удалось добиться снижения максимальной глубины решающих деревьев. что позволило снизить негативное влияние эффекта переобучения прогнозных моделей.

The subject of the research is the generation of photovoltaic power stations. The aim of this work is to develop a forecasting algorithm for photovoltaic power generation using intelligent forecasting models based on decision tree structures. The study includes an analysis of the current state of development and relevant issues in the electric power industry, encompassing stages of data collection, analysis, and preprocessing used for forecasting. In the developed algorithm for predicting hourly generation volumes of photovoltaic power stations, forecasting models based on decision trees are employed. By applying various models for generation forecasting during seasonal changes (winter, spring, summer, autumn), it has been possible to reduce the maximum depth of the decision trees, thereby minimizing the negative impact of overfitting on the forecasting models.

Keywords

МАШИННОЕ O6YЧЕНИЕ, RENEWABLE ENERGY SOURCES, МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ, MASTER'S THESIS, ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ, ФОТОЭЛЕКТРИЧЕСКИЕ СТАНЦИИ, GENERATION FORECASTING, MACHINE LEARNING, PHOTOVOLTAIC POWER STATIONS, ПРОГНОЗИРОВАНИЕ ГЕНЕРАЦИИ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!