
Целью данной работы является разработка программного обеспечения для генерации данных журналов и трассировки ИТ систем, а также создание модели машинного обучения для обнаружения аномалий в подобных данных. Объектом исследования являются процессы мониторинга и управления IT-операциями. В работе исследуются методы машинного обучения и анализа данных для обнаружения аномалий в реальном времени. Были разработаны тестовый стенд для генерации событий журналов и трассировок, а также алгоритм для анализа и обнаружения аномальных событий, что позволяет оптимизировать процессы управления IT-операциями и повысить надежность систем. Результаты могут быть использованы в дальнейших работах по теме поиска аномалий в данных журналов и данных трассировки ИТ систем.
The aim of this work is to develop software for generating log and trace data of IT systems, as well as to create a machine learning model for detecting anomalies in such data. The object of the research is the processes of monitoring and managing IT operations. The study explores machine learning methods and data analysis for real-time anomaly detection. A test bench was developed for generating log and trace events, along with an algorithm for analyzing and detecting anomalous events, which optimizes IT operations management processes and improves system reliability. The results can be used in further work on the topic of anomaly detection in log and trace data of IT systems.
ANOMALY DETECTION, ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, AIOPS, МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ, ОБНАРУЖЕНИЕ АНОМАЛИЙ, MASTER'S THESIS, NEURAL NETWORKS, IT SYSTEMS MONITORING, СБОР ДАННЫХ, АВТОМАТИЗАЦИЯ ПРОЦЕССОВ, НЕЙРОННЫЕ СЕТИ, АНАЛИЗ ДАННЫХ, ПРОГНОЗИРОВАНИЕ ОТКАЗОВ, ARTIFICIAL INTELLIGENCE, DATA ANOMALIES, MACHINE LEARNING, PROCESS AUTOMATION, МАШИННОЕ ОБУЧЕНИЕ, DATA COLLECTION, МОНИТОРИНГ IT-СИСТЕМ, АНОМАЛИИ В ДАННЫХ, TEXT ANALYSIS, FAILURE PREDICTION
ANOMALY DETECTION, ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, AIOPS, МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ, ОБНАРУЖЕНИЕ АНОМАЛИЙ, MASTER'S THESIS, NEURAL NETWORKS, IT SYSTEMS MONITORING, СБОР ДАННЫХ, АВТОМАТИЗАЦИЯ ПРОЦЕССОВ, НЕЙРОННЫЕ СЕТИ, АНАЛИЗ ДАННЫХ, ПРОГНОЗИРОВАНИЕ ОТКАЗОВ, ARTIFICIAL INTELLIGENCE, DATA ANOMALIES, MACHINE LEARNING, PROCESS AUTOMATION, МАШИННОЕ ОБУЧЕНИЕ, DATA COLLECTION, МОНИТОРИНГ IT-СИСТЕМ, АНОМАЛИИ В ДАННЫХ, TEXT ANALYSIS, FAILURE PREDICTION
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
