Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Проблемы, прогнозы и перспективы демографического развития России

Authors: Krupko, A.;

Проблемы, прогнозы и перспективы демографического развития России

Abstract

The initial data of the work are birth rate, mortality rate and population of the Russian Federation for 2022. The subject of the study is matrix and combined modelling of the population. The purpose of the study is to reveal the problems, make forecasts and justify the prospects for the development of the country’s population. The study used statistical, literary, system-structural, graphical and forecasting methods. The matrix model of population reproduction made it possible to calculate the number and structure of the population, the number of births and deaths. The model of birth rate growth makes it possible to determine its necessary level. The scientific contribution lies in the development of models of population reproduction, in the identification and analysis of interrelationships of modelling factors. According to all our models, population size is decreasing and population regressivity is increasing. Taking into account the structure of fertile population it is necessary to stimulate births of the third and all subsequent children. The results of the study can be used by the authorities in the development of demographic development programmes. The matrix model of population reproduction has constant parameters, but it can be used for variable indicators in the conditions of expert assessment of future changes in the environment.

Исходными данными работы являются показатели рождаемости, смертности и численности населения РФ за 2022 год. Предмет исследования - матричное и комбинированное моделирование населения. Цель исследования - раскрыть проблемы, сделать прогнозы и обосновать перспективы развития населения страны. В исследовании использовались статистический, литературный, системно-структурный, графические методы и методы прогнозирования. Матричная модель воспроизводства населения позволила рассчитать численность и структуру населения, число родившихся и умерших. С помощью модели роста рождаемости удалось определить необходимый ее уровень. Научный вклад заключается в разработке моделей воспроизводства населения, в выявлении и анализе взаимосвязей факторов моделирования. Выяснено, что по всем нашим моделям численность населения снижается, а регрессивность населения растет. Учитывая структуру фертильного населения, необходимо стимулирование рождений второго и всех последующих детей. Результаты исследования могут быть использованы органами власти при разработке программ демографического развития. Матричная модель воспроизводства населения имеет постоянные параметры, но ее можно применять и для переменных показателей в условиях экспертной оценки будущих изменений среды.

Country
Russian Federation
Keywords

РОССИЯ, МАТРИЧНАЯ МОДЕЛЬ, ПРОГНОЗ, FORECAST, RUSSIA, MATRIX MODEL, НАСЕЛЕНИЕ, POPULATION

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!