Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationer från U...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Flexural strength of dental restoratives

Authors: Blennow, Mikael; Al-Ahmed, Ahmed;

Flexural strength of dental restoratives

Abstract

Background: New dental restorative material, “Cention Forte” and “Admira Fusion” have been available on the market for quite some time but are still new in comparison with traditional resin-based composite, “Ceram.x Spectra ST” and glass ionomer cement, “GC Fuji II LC”. Aim: To compare the flexural strength, elemental composition, and porosity of new dental restorative materials (Cention Forte, Admira Fusion) with existing ones (Ceram.x Spectra ST, GC Fuji II LC). Methods: Three-point bending test and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) analysis was used to compare the flexural strength and composition among Cention Forte, Ceram.x Spectra ST, GC Fuji II LC and Admira Fusion. 10 test specimens were used for each material, 40 in total. The dimension of the test specimens were l (25 ± 2) mm x b (2,0 ± 0,1) mm x h (2,0 ± 0,1) mm. The statical analysis was performed with one-way ANOVA followed by Bonferroni’s post-hoc test. Results: The three-point bending test showed that Cention Forte and Ceram.x Spectra ST had the highest mean flexural strength between the 4 materials tested, whereas GC Fuji II LC had the lowest. Admira Fusion had an intermediate value. SEM-EDS showed significant differences in material density and composition, it was seen that Ceram.x Spectra ST and Admira Fusion had the lowest porosity while GC Fuji II LC had the highest porosity. Conclusion: It can be concluded that Cention Forte and Ceram.x Spectra ST are the strongest dental materials among the ones tested, with high flexural strength values. Therefore, they may be more suitable for use in high stress-bearing areas. GC Fuji II LC showed the lowest flexural strength values, making it less suitable for use in such areas. Admira Fusion showed intermediate values, making it a good option for applications with moderate stress-bearing requirements. SEM-EDS analysis showed that Ceram.x Spectra ST and Admira Fusion had the lowest amount of porosity, whereas GC Fuji II LC had the highest. The presence of these porosities weakens the material, a higher number of porosities implies lower flexural strength values.

Country
Sweden
Related Organizations
Keywords

Flexural strength, porosity, Dentistry, Odontologi

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities