Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Collectionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Conference object . 2024
License: CC BY NC ND
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fast System Level Synthesis: Robust Model Predictive Control using Riccati Recursions

Authors: Leeman, Antoine; id_orcid0000-0002-1756-9506; Köhler, Johannes; id_orcid0000-0002-5556-604X; Messerer, Florian; Lahr, Amon; id_orcid0009-0008-1051-1943; Diehl, Moritz; Zeilinger, Melanie N.;

Fast System Level Synthesis: Robust Model Predictive Control using Riccati Recursions

Abstract

System level synthesis enables improved robust MPC formulations by allowing for joint optimization of the nominal trajectory and controller. This paper introduces a tailored algorithm for solving the corresponding disturbance feedback optimization problem for linear time-varying systems. The proposed algorithm iterates between optimizing the controller and the nominal trajectory while converging q-linearly to an optimal solution. We show that the controller optimization can be solved through Riccati recursions leading to a horizon-length, state, and input scalability of O(N^2(n_x^3+n_u^3)) for each iterate. On a numerical example, the proposed algorithm exhibits computational speedups by a factor of up to 10^3 compared to general-purpose commercial solvers.

ISSN:2405-8963

Related Organizations
Keywords

Model predictive control; Optimization and Control (math.OC); System Level Synthesis; Optimization and Model Predictive Control; Robust Model Predictive Control; Real-Time Implementation of Model Predictive Control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green