
Increasing requirements to measuring transducers lead to the need to improve and propose alternatives of their mathematical description. The application in this case of differential equations of various types testifies to great computational complexity of the given problem statement. In this regard, constructively relevant are the methods for creating integral dynamic models of measuring transducers that enable expansion of the tools for computer simulation. The method considered in present paper implies determining a pulse transient characteristic and leads to the formation of the operators (cores) of measuring transducers in the form of integral mathematical dependences, that is, explicit integral dynamic models. The method of obtaining an analytic expression of the pulse transition function of measuring transducers with lumped parameters is represented as a solution to the homogeneous differential equation that corresponds to the specified non-homogeneous differential equation. This technique is easily illustrated on the examples of measuring transducers of the first and second order. The principle of determining a pulse transient characteristic for measuring transducers with distributed parameters by the assigned equations in partial derivatives is the same as for the case with lumped parameters. Рассмотренный в статье метод заключается в определении импульсной переходной характеристики по заданным дифференциальным уравнениям, которая является ядром явной интегральной динамической модели измерительных преобразователей, как с распределенными, так и с сосредоточенными параметрами. Интегральные динамические модели позволяют расширить алгоритмические основы компьютерного моделирования в задачах исследования измерительных преобразователей.
импульсная переходная функция, differential equation, интегральная динамическая модель, integral dynamic model, измерительный преобразователь, дифференциальное уравнение, measuring transducer, pulse transition function
импульсная переходная функция, differential equation, интегральная динамическая модель, integral dynamic model, измерительный преобразователь, дифференциальное уравнение, measuring transducer, pulse transition function
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
