
Оценивается влияние малых случайных возмущений на функционирование детерминированной открытой системы массового обслуживания в режиме большой загрузки. Доказано, что в зависимости от значения некоторого параметра, определяющего малость случайной флуктуации от коэффициента загрузки, предельное распределение времени ожидания сходится к нулю или к бесконечности. Величина значения параметра, при котором происходит переход от нуля к бесконечности, определяется максимальной тяжестью хвостов распределений времени обслуживания и интервалом между приходом заявок.
распределения с тяжелыми хвостами, режим большой загрузки, система обслуживания GǀGǀ1ǀ∞, почти детерминированный режим, время ожидания начала обслуживания
распределения с тяжелыми хвостами, режим большой загрузки, система обслуживания GǀGǀ1ǀ∞, почти детерминированный режим, время ожидания начала обслуживания
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
