Powered by OpenAIRE graph
Found an issue? Give us feedback

Бинарное прогнозирование динамических показателей на основе методов машинного обучения

Бинарное прогнозирование динамических показателей на основе методов машинного обучения

Abstract

Рассмотрена задача бинарного прогнозирования динамических показателей на основе машинного обучения с приложением к задаче перевозки грузов железнодорожным транспортом. В качестве методов выбраны вероятностная нейронная сеть и логистическая регрессия. Бинарное прогнозирование заключается в оценке прогнозных значений показателя на основе вероятностей принадлежности одному из двух интервалов. Так как при такой процедуре определяется не само будущее значение показателя, а то, в каком интервале оно будет находиться, такое прогнозирование называют бинарным, или интервальным. Программное обеспечение разработано на языке программирования Python с применением сторонних библиотек с открытым исходным кодом. Тестирование созданного программно-алгоритмического обеспечения по реальным исходным данным перевозочного процесса показало высокую точность бинарного прогнозирования и на ос-нове вероятностной нейронной сети, и на основе логистической регрессии.

Related Organizations
Keywords

бинарное прогнозирование, нейронные сети вероятностные, динамические показатели, логистическая регрессия

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green