
Рассмотрена задача бинарного прогнозирования динамических показателей на основе машинного обучения с приложением к задаче перевозки грузов железнодорожным транспортом. В качестве методов выбраны вероятностная нейронная сеть и логистическая регрессия. Бинарное прогнозирование заключается в оценке прогнозных значений показателя на основе вероятностей принадлежности одному из двух интервалов. Так как при такой процедуре определяется не само будущее значение показателя, а то, в каком интервале оно будет находиться, такое прогнозирование называют бинарным, или интервальным. Программное обеспечение разработано на языке программирования Python с применением сторонних библиотек с открытым исходным кодом. Тестирование созданного программно-алгоритмического обеспечения по реальным исходным данным перевозочного процесса показало высокую точность бинарного прогнозирования и на ос-нове вероятностной нейронной сети, и на основе логистической регрессии.
бинарное прогнозирование, нейронные сети вероятностные, динамические показатели, логистическая регрессия
бинарное прогнозирование, нейронные сети вероятностные, динамические показатели, логистическая регрессия
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
