
Бент-функция называется самодуальной, если она совпадает со своей дуальной бент-функцией. Исследованы подфункции самодуальных бент-функций, полученные фиксацией первой переменной, а также первых двух переменных. Для описания подфункций от n — 1 переменной введено понятие самодуальности почти бент-функции от нечётного числа переменных. Доказано, что между множествами самодуальных бент-функций от n переменных и почти бент-функций от n — 1 переменной существует взаимно однозначное соответствие. Получено достаточное условие того, что подфункции от n — 2 переменных самодуальной бент-функ-ции являются бент-функциями. Предложен ряд новых итеративных конструкций бент-функций. Получена новая итеративная нижняя оценка числа самодуальных бент-функций.
подфункция, самодуальная бент-функция, почти бент-функция, Рэлея отношение
подфункция, самодуальная бент-функция, почти бент-функция, Рэлея отношение
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
