
Большинство предприятий, занятых в сфере добычи нефти и газа, используют автоматизированные системы для мониторинга состояния оборудования. Процесс мониторинга может создавать большие объёмы данных. Поскольку эти данные потенциально могут содержать ценные с точки зрения улучшения технологического процесса знания, требуется их анализ. Ввиду сложности создания и поддержания моделей прогнозирования на основе таких данные, требуется использование методов для создания моделей, которые могут быть использованы повторно. В данной работе предлагается технология, представляющая собой последовательность шагов по созданию переиспользуемых моделей интеллектуального анализа данных нефтегазового оборудования.
технологические данные, прогнозирование, мониторинг, модели, автоматизированные системы, технологические процессы, интеллектуальный анализ, нефтегазовое оборудование
технологические данные, прогнозирование, мониторинг, модели, автоматизированные системы, технологические процессы, интеллектуальный анализ, нефтегазовое оборудование
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
