Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic archive o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Применение эвристических алгоритмов в анализе данных для решения задачи диагностирования электроцентробежных насосных установок

Authors: Valiakhmetov, Rustam Ildarovich; Yamaliev, Vil Uzbekovich; Shubin, Stanislav Sergeevich; Alferov, Aleksey Viktorovich;

Применение эвристических алгоритмов в анализе данных для решения задачи диагностирования электроцентробежных насосных установок

Abstract

Обеспечение эффективного контроля и предотвращение отказов электроцентробежных насосных установок ввиду их широкого распространения является актуальной и востребованной задачей. Применение систем автоматизированного контроля электроцентробежных насосных установок позволяет повысить качество и скорость принимаемых решений о их техническом состоянии. Все методы диагностирования установок электроцентробежных насосов направлены на контроль состояния составных узлов и сводятся к анализу временных рядов, являющихся временными развёртками параметров эксплуатации. Традиционно применяемые линейные методы исследования временных рядов в последние десятилетия были существенно расширены нелинейными методами, среди которых значительное развитие получили эвристические алгоритмы. Цель работы: повышение эффективности определения технического состояния установок электроцентробежных насосов в процессе эксплуатации. Методы исследования. Предложенный в работе подход основывается на решении задачи диагностирования путём декомпозиции на следующие подзадачи: автоматическая сегментация, формализация и интерпретация полученных данных. Сегментация рассмотрена как задача кластеризации, цель которой - установление автокорреляционных связей между значениями временного ряда с формированием темпоральных кластеров и адаптивной аппроксимации в рамках установленных участков при сохранении локальных особенностей сигналов. Для каждого выделяемого класса отклонений работы электроцентробежных насосных установок сформированы решающие правила на основании экспертных знаний. Основными отличиями от классического подхода к задаче диагностирования являются: отсутствие необходимости участия эксперта при решении задачи кластеризации; обеспечение адаптивной аппроксимации в рамках выделенных временных участков; возможность реализации интерпретируемых подходов распознавания неисправностей. Результаты. Предложен подход, основанный на решении задачи диагностирования путём её декомпозиции на следующие подзадачи: автоматическая сегментация, формализация и интерпретация полученных данных. Определён необходимый перечень контролируемых параметров эксплуатации электроцентробежных насосных установок, позволяющий реализовать процесс технического диагностирования.

Ensuring effective control and preventing failures of electrical submersible pumps, because of their wide distribution is the relevant and demanded task. The use of automated control systems of electric centrifugal pumping units allows improving the quality and speed of decisions made about their technical condition. All methods of diagnosing the installation of electrical submersible pumps are aimed at monitoring the state of the composite nodes, and are reduced to the analysis of time series, which are the time scans of the operation parameters. Traditionally applied linear methods of time series research in the last decades have been substantially expanded by nonlinear methods, among which heuristic algorithms were developed significantly. The main aim is to increase the efficiency of determining the technical state of installations of electric centrifugal pumps during operation. Methods. The approach proposed in this paper is based on solving the diagnostic problem by decomposition into the following subtasks: automatic segmentation, formalization and interpretation of the data obtained. Segmentation is considered as a clustering problem, the purpose of which is the establishment of autocorrelation links between the values of the time series with the formation of temporal clusters and adaptive approximation within the established areas while preserving the local features of the signals. For each allocated class of deviations in operation of electric centrifugal pumping units, the decisive rules are formed based on expert knowledge. The main differences from the classical approach to the problem of diagnosis are: the lack of the need for expert participation in solving the clustering problem; providing adaptive approximation within the allocated time intervals; the possibility of implementing interpretable approaches to fault recognition. Results. The authors have proposed the approach based on solving the diagnostic problem by its decomposition into the following subtasks: automatic segmentation, formalization and interpretation of the data obtained. The necessary list of controlled parameters of operation of the electric centrifugal pumping units is determined. The list allows technical diagnosis.

Related Organizations
Keywords

эксплуатация, centrifugal, электроцентробежные насосы, analysis, классификация, диагностика, техническое диагностирование, статистика, насосы, эвристические алгоритмы, анализ, classification, statistics, pump, diagnostics, системы автоматизированного контроля, status, центробежные насосы, состояние

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green